The Emerging Role of Artificial Intelligence in the Fight Against COVID-19
The coronavirus disease 2019 (COVID-19) pandemic has generated large volumes of clinical data that can be an invaluable resource towards answering a number of important questions for this and future pandemics. Artificial intelligence can have an important role in analysing such data to identify popu...
Ausführliche Beschreibung
Autor*in: |
Ghose, Aruni [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Umfang: |
2 |
---|
Übergeordnetes Werk: |
Enthalten in: Phase transition and alternation in a model of perceptual bistability in the presence of Lévy noise - Feng, Jing ELSEVIER, 2018, official organ of the European Association of Urology, the European Organization for Research and Treatment of Cancer - Genito-Urinary Group, the European Society for Urological Oncology and Endocrinology, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:78 ; year:2020 ; number:6 ; pages:775-776 ; extent:2 |
Links: |
---|
DOI / URN: |
10.1016/j.eururo.2020.09.031 |
---|
Katalog-ID: |
ELV052192210 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV052192210 | ||
003 | DE-627 | ||
005 | 20230624182627.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.eururo.2020.09.031 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001407.pica |
035 | |a (DE-627)ELV052192210 | ||
035 | |a (ELSEVIER)S0302-2838(20)30723-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |q VZ |
084 | |a 33.25 |2 bkl | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Ghose, Aruni |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Emerging Role of Artificial Intelligence in the Fight Against COVID-19 |
264 | 1 | |c 2020 | |
300 | |a 2 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The coronavirus disease 2019 (COVID-19) pandemic has generated large volumes of clinical data that can be an invaluable resource towards answering a number of important questions for this and future pandemics. Artificial intelligence can have an important role in analysing such data to identify populations at higher risk of COVID-19–related urological pathologies and to suggest treatments that block viral entry into cells by interrupting the angiotensin-converting enzyme 2-transmembrane serine protease 2 (ACE2-TMPRSS2) pathway. | ||
700 | 1 | |a Roy, Sabyasachi |4 oth | |
700 | 1 | |a Vasdev, Nikhil |4 oth | |
700 | 1 | |a Olsburgh, Jonathon |4 oth | |
700 | 1 | |a Dasgupta, Prokar |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Feng, Jing ELSEVIER |t Phase transition and alternation in a model of perceptual bistability in the presence of Lévy noise |d 2018 |d official organ of the European Association of Urology, the European Organization for Research and Treatment of Cancer - Genito-Urinary Group, the European Society for Urological Oncology and Endocrinology |g Amsterdam [u.a.] |w (DE-627)ELV000464341 |
773 | 1 | 8 | |g volume:78 |g year:2020 |g number:6 |g pages:775-776 |g extent:2 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.eururo.2020.09.031 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-MAT | ||
936 | b | k | |a 33.25 |j Thermodynamik |j statistische Physik |q VZ |
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 78 |j 2020 |e 6 |h 775-776 |g 2 |
author_variant |
a g ag |
---|---|
matchkey_str |
ghosearuniroysabyasachivasdevnikhilolsbu:2020----:heegnrloatfcaitliecite |
hierarchy_sort_str |
2020 |
bklnumber |
33.25 31.00 |
publishDate |
2020 |
allfields |
10.1016/j.eururo.2020.09.031 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001407.pica (DE-627)ELV052192210 (ELSEVIER)S0302-2838(20)30723-5 DE-627 ger DE-627 rakwb eng 500 VZ 33.25 bkl 31.00 bkl Ghose, Aruni verfasserin aut The Emerging Role of Artificial Intelligence in the Fight Against COVID-19 2020 2 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The coronavirus disease 2019 (COVID-19) pandemic has generated large volumes of clinical data that can be an invaluable resource towards answering a number of important questions for this and future pandemics. Artificial intelligence can have an important role in analysing such data to identify populations at higher risk of COVID-19–related urological pathologies and to suggest treatments that block viral entry into cells by interrupting the angiotensin-converting enzyme 2-transmembrane serine protease 2 (ACE2-TMPRSS2) pathway. Roy, Sabyasachi oth Vasdev, Nikhil oth Olsburgh, Jonathon oth Dasgupta, Prokar oth Enthalten in Elsevier Science Feng, Jing ELSEVIER Phase transition and alternation in a model of perceptual bistability in the presence of Lévy noise 2018 official organ of the European Association of Urology, the European Organization for Research and Treatment of Cancer - Genito-Urinary Group, the European Society for Urological Oncology and Endocrinology Amsterdam [u.a.] (DE-627)ELV000464341 volume:78 year:2020 number:6 pages:775-776 extent:2 https://doi.org/10.1016/j.eururo.2020.09.031 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 78 2020 6 775-776 2 |
spelling |
10.1016/j.eururo.2020.09.031 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001407.pica (DE-627)ELV052192210 (ELSEVIER)S0302-2838(20)30723-5 DE-627 ger DE-627 rakwb eng 500 VZ 33.25 bkl 31.00 bkl Ghose, Aruni verfasserin aut The Emerging Role of Artificial Intelligence in the Fight Against COVID-19 2020 2 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The coronavirus disease 2019 (COVID-19) pandemic has generated large volumes of clinical data that can be an invaluable resource towards answering a number of important questions for this and future pandemics. Artificial intelligence can have an important role in analysing such data to identify populations at higher risk of COVID-19–related urological pathologies and to suggest treatments that block viral entry into cells by interrupting the angiotensin-converting enzyme 2-transmembrane serine protease 2 (ACE2-TMPRSS2) pathway. Roy, Sabyasachi oth Vasdev, Nikhil oth Olsburgh, Jonathon oth Dasgupta, Prokar oth Enthalten in Elsevier Science Feng, Jing ELSEVIER Phase transition and alternation in a model of perceptual bistability in the presence of Lévy noise 2018 official organ of the European Association of Urology, the European Organization for Research and Treatment of Cancer - Genito-Urinary Group, the European Society for Urological Oncology and Endocrinology Amsterdam [u.a.] (DE-627)ELV000464341 volume:78 year:2020 number:6 pages:775-776 extent:2 https://doi.org/10.1016/j.eururo.2020.09.031 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 78 2020 6 775-776 2 |
allfields_unstemmed |
10.1016/j.eururo.2020.09.031 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001407.pica (DE-627)ELV052192210 (ELSEVIER)S0302-2838(20)30723-5 DE-627 ger DE-627 rakwb eng 500 VZ 33.25 bkl 31.00 bkl Ghose, Aruni verfasserin aut The Emerging Role of Artificial Intelligence in the Fight Against COVID-19 2020 2 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The coronavirus disease 2019 (COVID-19) pandemic has generated large volumes of clinical data that can be an invaluable resource towards answering a number of important questions for this and future pandemics. Artificial intelligence can have an important role in analysing such data to identify populations at higher risk of COVID-19–related urological pathologies and to suggest treatments that block viral entry into cells by interrupting the angiotensin-converting enzyme 2-transmembrane serine protease 2 (ACE2-TMPRSS2) pathway. Roy, Sabyasachi oth Vasdev, Nikhil oth Olsburgh, Jonathon oth Dasgupta, Prokar oth Enthalten in Elsevier Science Feng, Jing ELSEVIER Phase transition and alternation in a model of perceptual bistability in the presence of Lévy noise 2018 official organ of the European Association of Urology, the European Organization for Research and Treatment of Cancer - Genito-Urinary Group, the European Society for Urological Oncology and Endocrinology Amsterdam [u.a.] (DE-627)ELV000464341 volume:78 year:2020 number:6 pages:775-776 extent:2 https://doi.org/10.1016/j.eururo.2020.09.031 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 78 2020 6 775-776 2 |
allfieldsGer |
10.1016/j.eururo.2020.09.031 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001407.pica (DE-627)ELV052192210 (ELSEVIER)S0302-2838(20)30723-5 DE-627 ger DE-627 rakwb eng 500 VZ 33.25 bkl 31.00 bkl Ghose, Aruni verfasserin aut The Emerging Role of Artificial Intelligence in the Fight Against COVID-19 2020 2 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The coronavirus disease 2019 (COVID-19) pandemic has generated large volumes of clinical data that can be an invaluable resource towards answering a number of important questions for this and future pandemics. Artificial intelligence can have an important role in analysing such data to identify populations at higher risk of COVID-19–related urological pathologies and to suggest treatments that block viral entry into cells by interrupting the angiotensin-converting enzyme 2-transmembrane serine protease 2 (ACE2-TMPRSS2) pathway. Roy, Sabyasachi oth Vasdev, Nikhil oth Olsburgh, Jonathon oth Dasgupta, Prokar oth Enthalten in Elsevier Science Feng, Jing ELSEVIER Phase transition and alternation in a model of perceptual bistability in the presence of Lévy noise 2018 official organ of the European Association of Urology, the European Organization for Research and Treatment of Cancer - Genito-Urinary Group, the European Society for Urological Oncology and Endocrinology Amsterdam [u.a.] (DE-627)ELV000464341 volume:78 year:2020 number:6 pages:775-776 extent:2 https://doi.org/10.1016/j.eururo.2020.09.031 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 78 2020 6 775-776 2 |
allfieldsSound |
10.1016/j.eururo.2020.09.031 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001407.pica (DE-627)ELV052192210 (ELSEVIER)S0302-2838(20)30723-5 DE-627 ger DE-627 rakwb eng 500 VZ 33.25 bkl 31.00 bkl Ghose, Aruni verfasserin aut The Emerging Role of Artificial Intelligence in the Fight Against COVID-19 2020 2 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The coronavirus disease 2019 (COVID-19) pandemic has generated large volumes of clinical data that can be an invaluable resource towards answering a number of important questions for this and future pandemics. Artificial intelligence can have an important role in analysing such data to identify populations at higher risk of COVID-19–related urological pathologies and to suggest treatments that block viral entry into cells by interrupting the angiotensin-converting enzyme 2-transmembrane serine protease 2 (ACE2-TMPRSS2) pathway. Roy, Sabyasachi oth Vasdev, Nikhil oth Olsburgh, Jonathon oth Dasgupta, Prokar oth Enthalten in Elsevier Science Feng, Jing ELSEVIER Phase transition and alternation in a model of perceptual bistability in the presence of Lévy noise 2018 official organ of the European Association of Urology, the European Organization for Research and Treatment of Cancer - Genito-Urinary Group, the European Society for Urological Oncology and Endocrinology Amsterdam [u.a.] (DE-627)ELV000464341 volume:78 year:2020 number:6 pages:775-776 extent:2 https://doi.org/10.1016/j.eururo.2020.09.031 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT 33.25 Thermodynamik statistische Physik VZ 31.00 Mathematik: Allgemeines VZ AR 78 2020 6 775-776 2 |
language |
English |
source |
Enthalten in Phase transition and alternation in a model of perceptual bistability in the presence of Lévy noise Amsterdam [u.a.] volume:78 year:2020 number:6 pages:775-776 extent:2 |
sourceStr |
Enthalten in Phase transition and alternation in a model of perceptual bistability in the presence of Lévy noise Amsterdam [u.a.] volume:78 year:2020 number:6 pages:775-776 extent:2 |
format_phy_str_mv |
Article |
bklname |
Thermodynamik statistische Physik Mathematik: Allgemeines |
institution |
findex.gbv.de |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Phase transition and alternation in a model of perceptual bistability in the presence of Lévy noise |
authorswithroles_txt_mv |
Ghose, Aruni @@aut@@ Roy, Sabyasachi @@oth@@ Vasdev, Nikhil @@oth@@ Olsburgh, Jonathon @@oth@@ Dasgupta, Prokar @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV000464341 |
dewey-sort |
3500 |
id |
ELV052192210 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052192210</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624182627.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eururo.2020.09.031</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001407.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052192210</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0302-2838(20)30723-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghose, Aruni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Emerging Role of Artificial Intelligence in the Fight Against COVID-19</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">2</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The coronavirus disease 2019 (COVID-19) pandemic has generated large volumes of clinical data that can be an invaluable resource towards answering a number of important questions for this and future pandemics. Artificial intelligence can have an important role in analysing such data to identify populations at higher risk of COVID-19–related urological pathologies and to suggest treatments that block viral entry into cells by interrupting the angiotensin-converting enzyme 2-transmembrane serine protease 2 (ACE2-TMPRSS2) pathway.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roy, Sabyasachi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vasdev, Nikhil</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olsburgh, Jonathon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dasgupta, Prokar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Feng, Jing ELSEVIER</subfield><subfield code="t">Phase transition and alternation in a model of perceptual bistability in the presence of Lévy noise</subfield><subfield code="d">2018</subfield><subfield code="d">official organ of the European Association of Urology, the European Organization for Research and Treatment of Cancer - Genito-Urinary Group, the European Society for Urological Oncology and Endocrinology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000464341</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:78</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:775-776</subfield><subfield code="g">extent:2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.eururo.2020.09.031</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.25</subfield><subfield code="j">Thermodynamik</subfield><subfield code="j">statistische Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">78</subfield><subfield code="j">2020</subfield><subfield code="e">6</subfield><subfield code="h">775-776</subfield><subfield code="g">2</subfield></datafield></record></collection>
|
author |
Ghose, Aruni |
spellingShingle |
Ghose, Aruni ddc 500 bkl 33.25 bkl 31.00 The Emerging Role of Artificial Intelligence in the Fight Against COVID-19 |
authorStr |
Ghose, Aruni |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000464341 |
format |
electronic Article |
dewey-ones |
500 - Natural sciences & mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
500 VZ 33.25 bkl 31.00 bkl The Emerging Role of Artificial Intelligence in the Fight Against COVID-19 |
topic |
ddc 500 bkl 33.25 bkl 31.00 |
topic_unstemmed |
ddc 500 bkl 33.25 bkl 31.00 |
topic_browse |
ddc 500 bkl 33.25 bkl 31.00 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s r sr n v nv j o jo p d pd |
hierarchy_parent_title |
Phase transition and alternation in a model of perceptual bistability in the presence of Lévy noise |
hierarchy_parent_id |
ELV000464341 |
dewey-tens |
500 - Science |
hierarchy_top_title |
Phase transition and alternation in a model of perceptual bistability in the presence of Lévy noise |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000464341 |
title |
The Emerging Role of Artificial Intelligence in the Fight Against COVID-19 |
ctrlnum |
(DE-627)ELV052192210 (ELSEVIER)S0302-2838(20)30723-5 |
title_full |
The Emerging Role of Artificial Intelligence in the Fight Against COVID-19 |
author_sort |
Ghose, Aruni |
journal |
Phase transition and alternation in a model of perceptual bistability in the presence of Lévy noise |
journalStr |
Phase transition and alternation in a model of perceptual bistability in the presence of Lévy noise |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
775 |
author_browse |
Ghose, Aruni |
container_volume |
78 |
physical |
2 |
class |
500 VZ 33.25 bkl 31.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ghose, Aruni |
doi_str_mv |
10.1016/j.eururo.2020.09.031 |
dewey-full |
500 |
title_sort |
emerging role of artificial intelligence in the fight against covid-19 |
title_auth |
The Emerging Role of Artificial Intelligence in the Fight Against COVID-19 |
abstract |
The coronavirus disease 2019 (COVID-19) pandemic has generated large volumes of clinical data that can be an invaluable resource towards answering a number of important questions for this and future pandemics. Artificial intelligence can have an important role in analysing such data to identify populations at higher risk of COVID-19–related urological pathologies and to suggest treatments that block viral entry into cells by interrupting the angiotensin-converting enzyme 2-transmembrane serine protease 2 (ACE2-TMPRSS2) pathway. |
abstractGer |
The coronavirus disease 2019 (COVID-19) pandemic has generated large volumes of clinical data that can be an invaluable resource towards answering a number of important questions for this and future pandemics. Artificial intelligence can have an important role in analysing such data to identify populations at higher risk of COVID-19–related urological pathologies and to suggest treatments that block viral entry into cells by interrupting the angiotensin-converting enzyme 2-transmembrane serine protease 2 (ACE2-TMPRSS2) pathway. |
abstract_unstemmed |
The coronavirus disease 2019 (COVID-19) pandemic has generated large volumes of clinical data that can be an invaluable resource towards answering a number of important questions for this and future pandemics. Artificial intelligence can have an important role in analysing such data to identify populations at higher risk of COVID-19–related urological pathologies and to suggest treatments that block viral entry into cells by interrupting the angiotensin-converting enzyme 2-transmembrane serine protease 2 (ACE2-TMPRSS2) pathway. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT |
container_issue |
6 |
title_short |
The Emerging Role of Artificial Intelligence in the Fight Against COVID-19 |
url |
https://doi.org/10.1016/j.eururo.2020.09.031 |
remote_bool |
true |
author2 |
Roy, Sabyasachi Vasdev, Nikhil Olsburgh, Jonathon Dasgupta, Prokar |
author2Str |
Roy, Sabyasachi Vasdev, Nikhil Olsburgh, Jonathon Dasgupta, Prokar |
ppnlink |
ELV000464341 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.eururo.2020.09.031 |
up_date |
2024-07-06T22:21:17.777Z |
_version_ |
1803869988090544128 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052192210</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624182627.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eururo.2020.09.031</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001407.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052192210</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0302-2838(20)30723-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghose, Aruni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Emerging Role of Artificial Intelligence in the Fight Against COVID-19</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">2</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The coronavirus disease 2019 (COVID-19) pandemic has generated large volumes of clinical data that can be an invaluable resource towards answering a number of important questions for this and future pandemics. Artificial intelligence can have an important role in analysing such data to identify populations at higher risk of COVID-19–related urological pathologies and to suggest treatments that block viral entry into cells by interrupting the angiotensin-converting enzyme 2-transmembrane serine protease 2 (ACE2-TMPRSS2) pathway.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roy, Sabyasachi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vasdev, Nikhil</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olsburgh, Jonathon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dasgupta, Prokar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Feng, Jing ELSEVIER</subfield><subfield code="t">Phase transition and alternation in a model of perceptual bistability in the presence of Lévy noise</subfield><subfield code="d">2018</subfield><subfield code="d">official organ of the European Association of Urology, the European Organization for Research and Treatment of Cancer - Genito-Urinary Group, the European Society for Urological Oncology and Endocrinology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000464341</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:78</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:775-776</subfield><subfield code="g">extent:2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.eururo.2020.09.031</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.25</subfield><subfield code="j">Thermodynamik</subfield><subfield code="j">statistische Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">78</subfield><subfield code="j">2020</subfield><subfield code="e">6</subfield><subfield code="h">775-776</subfield><subfield code="g">2</subfield></datafield></record></collection>
|
score |
7.398121 |