Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells
Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels o...
Ausführliche Beschreibung
Autor*in: |
Karacan, Kivanc [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
13 |
---|
Übergeordnetes Werk: |
Enthalten in: External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs - Dedhia, Kavita ELSEVIER, 2018, official journal of the International Association for Hydrogen Energy, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:45 ; year:2020 ; number:60 ; day:9 ; month:12 ; pages:35149-35161 ; extent:13 |
Links: |
---|
DOI / URN: |
10.1016/j.ijhydene.2020.01.251 |
---|
Katalog-ID: |
ELV052194906 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV052194906 | ||
003 | DE-627 | ||
005 | 20230626032945.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijhydene.2020.01.251 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001215.pica |
035 | |a (DE-627)ELV052194906 | ||
035 | |a (ELSEVIER)S0360-3199(20)30477-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.94 |2 bkl | ||
100 | 1 | |a Karacan, Kivanc |e verfasserin |4 aut | |
245 | 1 | 0 | |a Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells |
264 | 1 | |c 2020transfer abstract | |
300 | |a 13 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form. | ||
520 | |a Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form. | ||
650 | 7 | |a Light-weight plate |2 Elsevier | |
650 | 7 | |a Formability |2 Elsevier | |
650 | 7 | |a Metallic bipolar plates |2 Elsevier | |
650 | 7 | |a PEM fuel cell |2 Elsevier | |
700 | 1 | |a Celik, Selahattin |4 oth | |
700 | 1 | |a Toros, Serkan |4 oth | |
700 | 1 | |a Alkan, Mahmut |4 oth | |
700 | 1 | |a Aydin, Ugur |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Dedhia, Kavita ELSEVIER |t External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |d 2018 |d official journal of the International Association for Hydrogen Energy |g New York, NY [u.a.] |w (DE-627)ELV000127019 |
773 | 1 | 8 | |g volume:45 |g year:2020 |g number:60 |g day:9 |g month:12 |g pages:35149-35161 |g extent:13 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijhydene.2020.01.251 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.94 |j Hals-Nasen-Ohrenheilkunde |q VZ |
951 | |a AR | ||
952 | |d 45 |j 2020 |e 60 |b 9 |c 1209 |h 35149-35161 |g 13 |
author_variant |
k k kk |
---|---|
matchkey_str |
karacankivanccelikselahattintorosserkana:2020----:netgtoofraiiyfealcioapaevatmigo |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
44.94 |
publishDate |
2020 |
allfields |
10.1016/j.ijhydene.2020.01.251 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001215.pica (DE-627)ELV052194906 (ELSEVIER)S0360-3199(20)30477-8 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Karacan, Kivanc verfasserin aut Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells 2020transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form. Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form. Light-weight plate Elsevier Formability Elsevier Metallic bipolar plates Elsevier PEM fuel cell Elsevier Celik, Selahattin oth Toros, Serkan oth Alkan, Mahmut oth Aydin, Ugur oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:45 year:2020 number:60 day:9 month:12 pages:35149-35161 extent:13 https://doi.org/10.1016/j.ijhydene.2020.01.251 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 45 2020 60 9 1209 35149-35161 13 |
spelling |
10.1016/j.ijhydene.2020.01.251 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001215.pica (DE-627)ELV052194906 (ELSEVIER)S0360-3199(20)30477-8 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Karacan, Kivanc verfasserin aut Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells 2020transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form. Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form. Light-weight plate Elsevier Formability Elsevier Metallic bipolar plates Elsevier PEM fuel cell Elsevier Celik, Selahattin oth Toros, Serkan oth Alkan, Mahmut oth Aydin, Ugur oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:45 year:2020 number:60 day:9 month:12 pages:35149-35161 extent:13 https://doi.org/10.1016/j.ijhydene.2020.01.251 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 45 2020 60 9 1209 35149-35161 13 |
allfields_unstemmed |
10.1016/j.ijhydene.2020.01.251 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001215.pica (DE-627)ELV052194906 (ELSEVIER)S0360-3199(20)30477-8 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Karacan, Kivanc verfasserin aut Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells 2020transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form. Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form. Light-weight plate Elsevier Formability Elsevier Metallic bipolar plates Elsevier PEM fuel cell Elsevier Celik, Selahattin oth Toros, Serkan oth Alkan, Mahmut oth Aydin, Ugur oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:45 year:2020 number:60 day:9 month:12 pages:35149-35161 extent:13 https://doi.org/10.1016/j.ijhydene.2020.01.251 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 45 2020 60 9 1209 35149-35161 13 |
allfieldsGer |
10.1016/j.ijhydene.2020.01.251 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001215.pica (DE-627)ELV052194906 (ELSEVIER)S0360-3199(20)30477-8 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Karacan, Kivanc verfasserin aut Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells 2020transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form. Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form. Light-weight plate Elsevier Formability Elsevier Metallic bipolar plates Elsevier PEM fuel cell Elsevier Celik, Selahattin oth Toros, Serkan oth Alkan, Mahmut oth Aydin, Ugur oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:45 year:2020 number:60 day:9 month:12 pages:35149-35161 extent:13 https://doi.org/10.1016/j.ijhydene.2020.01.251 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 45 2020 60 9 1209 35149-35161 13 |
allfieldsSound |
10.1016/j.ijhydene.2020.01.251 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001215.pica (DE-627)ELV052194906 (ELSEVIER)S0360-3199(20)30477-8 DE-627 ger DE-627 rakwb eng 610 VZ 44.94 bkl Karacan, Kivanc verfasserin aut Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells 2020transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form. Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form. Light-weight plate Elsevier Formability Elsevier Metallic bipolar plates Elsevier PEM fuel cell Elsevier Celik, Selahattin oth Toros, Serkan oth Alkan, Mahmut oth Aydin, Ugur oth Enthalten in Elsevier Dedhia, Kavita ELSEVIER External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs 2018 official journal of the International Association for Hydrogen Energy New York, NY [u.a.] (DE-627)ELV000127019 volume:45 year:2020 number:60 day:9 month:12 pages:35149-35161 extent:13 https://doi.org/10.1016/j.ijhydene.2020.01.251 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 45 2020 60 9 1209 35149-35161 13 |
language |
English |
source |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:45 year:2020 number:60 day:9 month:12 pages:35149-35161 extent:13 |
sourceStr |
Enthalten in External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs New York, NY [u.a.] volume:45 year:2020 number:60 day:9 month:12 pages:35149-35161 extent:13 |
format_phy_str_mv |
Article |
bklname |
Hals-Nasen-Ohrenheilkunde |
institution |
findex.gbv.de |
topic_facet |
Light-weight plate Formability Metallic bipolar plates PEM fuel cell |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
authorswithroles_txt_mv |
Karacan, Kivanc @@aut@@ Celik, Selahattin @@oth@@ Toros, Serkan @@oth@@ Alkan, Mahmut @@oth@@ Aydin, Ugur @@oth@@ |
publishDateDaySort_date |
2020-01-09T00:00:00Z |
hierarchy_top_id |
ELV000127019 |
dewey-sort |
3610 |
id |
ELV052194906 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052194906</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626032945.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2020.01.251</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001215.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052194906</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(20)30477-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karacan, Kivanc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Light-weight plate</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Formability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metallic bipolar plates</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PEM fuel cell</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Celik, Selahattin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Toros, Serkan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alkan, Mahmut</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aydin, Ugur</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:60</subfield><subfield code="g">day:9</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:35149-35161</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2020.01.251</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2020</subfield><subfield code="e">60</subfield><subfield code="b">9</subfield><subfield code="c">1209</subfield><subfield code="h">35149-35161</subfield><subfield code="g">13</subfield></datafield></record></collection>
|
author |
Karacan, Kivanc |
spellingShingle |
Karacan, Kivanc ddc 610 bkl 44.94 Elsevier Light-weight plate Elsevier Formability Elsevier Metallic bipolar plates Elsevier PEM fuel cell Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells |
authorStr |
Karacan, Kivanc |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000127019 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.94 bkl Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells Light-weight plate Elsevier Formability Elsevier Metallic bipolar plates Elsevier PEM fuel cell Elsevier |
topic |
ddc 610 bkl 44.94 Elsevier Light-weight plate Elsevier Formability Elsevier Metallic bipolar plates Elsevier PEM fuel cell |
topic_unstemmed |
ddc 610 bkl 44.94 Elsevier Light-weight plate Elsevier Formability Elsevier Metallic bipolar plates Elsevier PEM fuel cell |
topic_browse |
ddc 610 bkl 44.94 Elsevier Light-weight plate Elsevier Formability Elsevier Metallic bipolar plates Elsevier PEM fuel cell |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s c sc s t st m a ma u a ua |
hierarchy_parent_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
hierarchy_parent_id |
ELV000127019 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000127019 |
title |
Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells |
ctrlnum |
(DE-627)ELV052194906 (ELSEVIER)S0360-3199(20)30477-8 |
title_full |
Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells |
author_sort |
Karacan, Kivanc |
journal |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
journalStr |
External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
35149 |
author_browse |
Karacan, Kivanc |
container_volume |
45 |
physical |
13 |
class |
610 VZ 44.94 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Karacan, Kivanc |
doi_str_mv |
10.1016/j.ijhydene.2020.01.251 |
dewey-full |
610 |
title_sort |
investigation of formability of metallic bipolar plates via stamping for light-weight pem fuel cells |
title_auth |
Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells |
abstract |
Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form. |
abstractGer |
Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form. |
abstract_unstemmed |
Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
container_issue |
60 |
title_short |
Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells |
url |
https://doi.org/10.1016/j.ijhydene.2020.01.251 |
remote_bool |
true |
author2 |
Celik, Selahattin Toros, Serkan Alkan, Mahmut Aydin, Ugur |
author2Str |
Celik, Selahattin Toros, Serkan Alkan, Mahmut Aydin, Ugur |
ppnlink |
ELV000127019 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.ijhydene.2020.01.251 |
up_date |
2024-07-06T22:21:45.400Z |
_version_ |
1803870017055358976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052194906</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626032945.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2020.01.251</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001215.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052194906</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(20)30477-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karacan, Kivanc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation of formability of metallic bipolar plates via stamping for light-weight PEM fuel cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bipolar plates (BPs) are one of the main members which constitute a significant percentage of a fuel cell system in terms of cost, weight and structural strength. Although frequently used graphite BPs have low density, high conductivity and corrosion resistance, machining the desired flow channels on the graphite plates is an important issue. On the other hand, metallic BPs can be considered a reasonable alternative material to graphite in the view of the material cost, fabrication of flow channels and some post-processes in which the large-scale manufacturing of graphite BPs is more complex compared to cutting and stamping processes for metal ones. This study offers a comparison of the formability of four different metals with four flow channel depths as bipolar plates formed by stamping. 304 Stainless Steel (SS 304), pure Titanium - Grade2 (CP–Ti) and Aliminium (Al 6016 and Al 3104) are chosen as the BP materials. A serpentine type flow channel with two different channel widths are formed on to 0.1 mm thick sheets. The channel width is chosen as 1.2 mm and 1.8 mm for the channel depths of 0.36 mm–0.55 mm, and 0.54 mm–0.82 mm, respectively. The stamping processes of the BPs materials are simulated via commercially available eta/Dynaform v5.9.4. software and formability characteristics are obtained for sixteen various cases. As a result, it is determined that SS 304 is the more appropriate material in the view of the formability for such a complex form.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Light-weight plate</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Formability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metallic bipolar plates</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PEM fuel cell</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Celik, Selahattin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Toros, Serkan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alkan, Mahmut</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aydin, Ugur</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Dedhia, Kavita ELSEVIER</subfield><subfield code="t">External auditory canal: Inferior, posterior-inferior, and anterior canal wall overhangs</subfield><subfield code="d">2018</subfield><subfield code="d">official journal of the International Association for Hydrogen Energy</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV000127019</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:60</subfield><subfield code="g">day:9</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:35149-35161</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijhydene.2020.01.251</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2020</subfield><subfield code="e">60</subfield><subfield code="b">9</subfield><subfield code="c">1209</subfield><subfield code="h">35149-35161</subfield><subfield code="g">13</subfield></datafield></record></collection>
|
score |
7.3994293 |