Circular automata synchronize with high probability
In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem conc...
Ausführliche Beschreibung
Autor*in: |
Aistleitner, Christoph [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR - Bandaru, Moulika ELSEVIER, 2022, JCTA, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:178 ; year:2021 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jcta.2020.105356 |
---|
Katalog-ID: |
ELV05220040X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV05220040X | ||
003 | DE-627 | ||
005 | 20230626032948.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jcta.2020.105356 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001272.pica |
035 | |a (DE-627)ELV05220040X | ||
035 | |a (ELSEVIER)S0097-3165(20)30148-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.85 |2 bkl | ||
100 | 1 | |a Aistleitner, Christoph |e verfasserin |4 aut | |
245 | 1 | 0 | |a Circular automata synchronize with high probability |
264 | 1 | |c 2021transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs. | ||
520 | |a In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs. | ||
650 | 7 | |a Random matrices |2 Elsevier | |
650 | 7 | |a Circulant graphs |2 Elsevier | |
650 | 7 | |a Automata |2 Elsevier | |
650 | 7 | |a Chromatic polynomials |2 Elsevier | |
650 | 7 | |a Synchronization |2 Elsevier | |
700 | 1 | |a D'Angeli, Daniele |4 oth | |
700 | 1 | |a Gutierrez, Abraham |4 oth | |
700 | 1 | |a Rodaro, Emanuele |4 oth | |
700 | 1 | |a Rosenmann, Amnon |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Bandaru, Moulika ELSEVIER |t IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |d 2022 |d JCTA |g Amsterdam [u.a.] |w (DE-627)ELV00767452X |
773 | 1 | 8 | |g volume:178 |g year:2021 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jcta.2020.105356 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 44.85 |j Kardiologie |j Angiologie |q VZ |
951 | |a AR | ||
952 | |d 178 |j 2021 |h 0 |
author_variant |
c a ca |
---|---|
matchkey_str |
aistleitnerchristophdangelidanielegutier:2021----:iclruoaaycrnzwth |
hierarchy_sort_str |
2021transfer abstract |
bklnumber |
44.85 |
publishDate |
2021 |
allfields |
10.1016/j.jcta.2020.105356 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001272.pica (DE-627)ELV05220040X (ELSEVIER)S0097-3165(20)30148-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.85 bkl Aistleitner, Christoph verfasserin aut Circular automata synchronize with high probability 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs. In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs. Random matrices Elsevier Circulant graphs Elsevier Automata Elsevier Chromatic polynomials Elsevier Synchronization Elsevier D'Angeli, Daniele oth Gutierrez, Abraham oth Rodaro, Emanuele oth Rosenmann, Amnon oth Enthalten in Elsevier Bandaru, Moulika ELSEVIER IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR 2022 JCTA Amsterdam [u.a.] (DE-627)ELV00767452X volume:178 year:2021 pages:0 https://doi.org/10.1016/j.jcta.2020.105356 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 178 2021 0 |
spelling |
10.1016/j.jcta.2020.105356 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001272.pica (DE-627)ELV05220040X (ELSEVIER)S0097-3165(20)30148-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.85 bkl Aistleitner, Christoph verfasserin aut Circular automata synchronize with high probability 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs. In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs. Random matrices Elsevier Circulant graphs Elsevier Automata Elsevier Chromatic polynomials Elsevier Synchronization Elsevier D'Angeli, Daniele oth Gutierrez, Abraham oth Rodaro, Emanuele oth Rosenmann, Amnon oth Enthalten in Elsevier Bandaru, Moulika ELSEVIER IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR 2022 JCTA Amsterdam [u.a.] (DE-627)ELV00767452X volume:178 year:2021 pages:0 https://doi.org/10.1016/j.jcta.2020.105356 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 178 2021 0 |
allfields_unstemmed |
10.1016/j.jcta.2020.105356 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001272.pica (DE-627)ELV05220040X (ELSEVIER)S0097-3165(20)30148-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.85 bkl Aistleitner, Christoph verfasserin aut Circular automata synchronize with high probability 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs. In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs. Random matrices Elsevier Circulant graphs Elsevier Automata Elsevier Chromatic polynomials Elsevier Synchronization Elsevier D'Angeli, Daniele oth Gutierrez, Abraham oth Rodaro, Emanuele oth Rosenmann, Amnon oth Enthalten in Elsevier Bandaru, Moulika ELSEVIER IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR 2022 JCTA Amsterdam [u.a.] (DE-627)ELV00767452X volume:178 year:2021 pages:0 https://doi.org/10.1016/j.jcta.2020.105356 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 178 2021 0 |
allfieldsGer |
10.1016/j.jcta.2020.105356 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001272.pica (DE-627)ELV05220040X (ELSEVIER)S0097-3165(20)30148-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.85 bkl Aistleitner, Christoph verfasserin aut Circular automata synchronize with high probability 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs. In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs. Random matrices Elsevier Circulant graphs Elsevier Automata Elsevier Chromatic polynomials Elsevier Synchronization Elsevier D'Angeli, Daniele oth Gutierrez, Abraham oth Rodaro, Emanuele oth Rosenmann, Amnon oth Enthalten in Elsevier Bandaru, Moulika ELSEVIER IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR 2022 JCTA Amsterdam [u.a.] (DE-627)ELV00767452X volume:178 year:2021 pages:0 https://doi.org/10.1016/j.jcta.2020.105356 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 178 2021 0 |
allfieldsSound |
10.1016/j.jcta.2020.105356 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001272.pica (DE-627)ELV05220040X (ELSEVIER)S0097-3165(20)30148-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.85 bkl Aistleitner, Christoph verfasserin aut Circular automata synchronize with high probability 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs. In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs. Random matrices Elsevier Circulant graphs Elsevier Automata Elsevier Chromatic polynomials Elsevier Synchronization Elsevier D'Angeli, Daniele oth Gutierrez, Abraham oth Rodaro, Emanuele oth Rosenmann, Amnon oth Enthalten in Elsevier Bandaru, Moulika ELSEVIER IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR 2022 JCTA Amsterdam [u.a.] (DE-627)ELV00767452X volume:178 year:2021 pages:0 https://doi.org/10.1016/j.jcta.2020.105356 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 178 2021 0 |
language |
English |
source |
Enthalten in IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR Amsterdam [u.a.] volume:178 year:2021 pages:0 |
sourceStr |
Enthalten in IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR Amsterdam [u.a.] volume:178 year:2021 pages:0 |
format_phy_str_mv |
Article |
bklname |
Kardiologie Angiologie |
institution |
findex.gbv.de |
topic_facet |
Random matrices Circulant graphs Automata Chromatic polynomials Synchronization |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |
authorswithroles_txt_mv |
Aistleitner, Christoph @@aut@@ D'Angeli, Daniele @@oth@@ Gutierrez, Abraham @@oth@@ Rodaro, Emanuele @@oth@@ Rosenmann, Amnon @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV00767452X |
dewey-sort |
3610 |
id |
ELV05220040X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05220040X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626032948.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcta.2020.105356</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001272.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05220040X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0097-3165(20)30148-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aistleitner, Christoph</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Circular automata synchronize with high probability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Random matrices</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Circulant graphs</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Automata</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chromatic polynomials</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Synchronization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">D'Angeli, Daniele</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gutierrez, Abraham</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodaro, Emanuele</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosenmann, Amnon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Bandaru, Moulika ELSEVIER</subfield><subfield code="t">IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR</subfield><subfield code="d">2022</subfield><subfield code="d">JCTA</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00767452X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:178</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jcta.2020.105356</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.85</subfield><subfield code="j">Kardiologie</subfield><subfield code="j">Angiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">178</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Aistleitner, Christoph |
spellingShingle |
Aistleitner, Christoph ddc 610 bkl 44.85 Elsevier Random matrices Elsevier Circulant graphs Elsevier Automata Elsevier Chromatic polynomials Elsevier Synchronization Circular automata synchronize with high probability |
authorStr |
Aistleitner, Christoph |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00767452X |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.85 bkl Circular automata synchronize with high probability Random matrices Elsevier Circulant graphs Elsevier Automata Elsevier Chromatic polynomials Elsevier Synchronization Elsevier |
topic |
ddc 610 bkl 44.85 Elsevier Random matrices Elsevier Circulant graphs Elsevier Automata Elsevier Chromatic polynomials Elsevier Synchronization |
topic_unstemmed |
ddc 610 bkl 44.85 Elsevier Random matrices Elsevier Circulant graphs Elsevier Automata Elsevier Chromatic polynomials Elsevier Synchronization |
topic_browse |
ddc 610 bkl 44.85 Elsevier Random matrices Elsevier Circulant graphs Elsevier Automata Elsevier Chromatic polynomials Elsevier Synchronization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
d d dd a g ag e r er a r ar |
hierarchy_parent_title |
IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |
hierarchy_parent_id |
ELV00767452X |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00767452X |
title |
Circular automata synchronize with high probability |
ctrlnum |
(DE-627)ELV05220040X (ELSEVIER)S0097-3165(20)30148-5 |
title_full |
Circular automata synchronize with high probability |
author_sort |
Aistleitner, Christoph |
journal |
IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |
journalStr |
IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Aistleitner, Christoph |
container_volume |
178 |
class |
610 VZ 44.85 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Aistleitner, Christoph |
doi_str_mv |
10.1016/j.jcta.2020.105356 |
dewey-full |
610 |
title_sort |
circular automata synchronize with high probability |
title_auth |
Circular automata synchronize with high probability |
abstract |
In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs. |
abstractGer |
In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs. |
abstract_unstemmed |
In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Circular automata synchronize with high probability |
url |
https://doi.org/10.1016/j.jcta.2020.105356 |
remote_bool |
true |
author2 |
D'Angeli, Daniele Gutierrez, Abraham Rodaro, Emanuele Rosenmann, Amnon |
author2Str |
D'Angeli, Daniele Gutierrez, Abraham Rodaro, Emanuele Rosenmann, Amnon |
ppnlink |
ELV00767452X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.jcta.2020.105356 |
up_date |
2024-07-06T22:22:34.574Z |
_version_ |
1803870068618035200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05220040X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626032948.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcta.2020.105356</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001272.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05220040X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0097-3165(20)30148-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aistleitner, Christoph</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Circular automata synchronize with high probability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper we prove that a uniformly distributed random circular automaton A n of order n synchronizes with high probability (w.h.p.). More precisely, we prove that P [ A n synchronizes ] = 1 − O ( 1 n ) . The main idea of the proof is to translate the synchronization problem into a problem concerning properties of a random matrix; these properties are then established with high probability by a careful analysis of the stochastic dependence structure among the random entries of the matrix. Additionally, we provide an upper bound for the probability of synchronization of circular automata in terms of chromatic polynomials of circulant graphs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Random matrices</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Circulant graphs</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Automata</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chromatic polynomials</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Synchronization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">D'Angeli, Daniele</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gutierrez, Abraham</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodaro, Emanuele</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosenmann, Amnon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Bandaru, Moulika ELSEVIER</subfield><subfield code="t">IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR</subfield><subfield code="d">2022</subfield><subfield code="d">JCTA</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00767452X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:178</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jcta.2020.105356</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.85</subfield><subfield code="j">Kardiologie</subfield><subfield code="j">Angiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">178</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4015245 |