Modeled economic potential for Eucalyptus spp. production for jet fuel additives in the United States
Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., gra...
Ausführliche Beschreibung
Autor*in: |
Davis, Maggie R. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil - Ubelaker, Douglas H. ELSEVIER, 2021, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:143 ; year:2020 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.biombioe.2020.105807 |
---|
Katalog-ID: |
ELV052208915 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV052208915 | ||
003 | DE-627 | ||
005 | 20230626032956.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.biombioe.2020.105807 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001242.pica |
035 | |a (DE-627)ELV052208915 | ||
035 | |a (ELSEVIER)S0961-9534(20)30342-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 340 |a 610 |q VZ |
084 | |a 2 |2 ssgn | ||
084 | |a INTRECHT |q DE-1a |2 fid | ||
084 | |a 44.72 |2 bkl | ||
100 | 1 | |a Davis, Maggie R. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modeled economic potential for Eucalyptus spp. production for jet fuel additives in the United States |
264 | 1 | |c 2020transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended. | ||
520 | |a Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended. | ||
650 | 7 | |a Aviation biofuels |2 Elsevier | |
650 | 7 | |a Mallee eucalypts |2 Elsevier | |
650 | 7 | |a Bioenergy crops |2 Elsevier | |
650 | 7 | |a Oil mallee |2 Elsevier | |
650 | 7 | |a Short-rotation annual coppice |2 Elsevier | |
700 | 1 | |a Kainer, David |4 oth | |
700 | 1 | |a Tuskan, Gerald A. |4 oth | |
700 | 1 | |a Langholtz, Matthew H. |4 oth | |
700 | 1 | |a Hellwinckel, Chad M. |4 oth | |
700 | 1 | |a Shedden, Magen |4 oth | |
700 | 1 | |a Eaton, Laurence |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Ubelaker, Douglas H. ELSEVIER |t Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil |d 2021 |g Amsterdam [u.a.] |w (DE-627)ELV007277822 |
773 | 1 | 8 | |g volume:143 |g year:2020 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.biombioe.2020.105807 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-INTRECHT | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.72 |j Rechtsmedizin |q VZ |
951 | |a AR | ||
952 | |d 143 |j 2020 |h 0 |
author_variant |
m r d mr mrd |
---|---|
matchkey_str |
davismaggierkainerdavidtuskangeraldalang:2020----:oeeeooiptniloeclpusprdcinojtuld |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
44.72 |
publishDate |
2020 |
allfields |
10.1016/j.biombioe.2020.105807 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001242.pica (DE-627)ELV052208915 (ELSEVIER)S0961-9534(20)30342-1 DE-627 ger DE-627 rakwb eng 340 610 VZ 2 ssgn INTRECHT DE-1a fid 44.72 bkl Davis, Maggie R. verfasserin aut Modeled economic potential for Eucalyptus spp. production for jet fuel additives in the United States 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended. Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended. Aviation biofuels Elsevier Mallee eucalypts Elsevier Bioenergy crops Elsevier Oil mallee Elsevier Short-rotation annual coppice Elsevier Kainer, David oth Tuskan, Gerald A. oth Langholtz, Matthew H. oth Hellwinckel, Chad M. oth Shedden, Magen oth Eaton, Laurence oth Enthalten in Elsevier Science Ubelaker, Douglas H. ELSEVIER Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil 2021 Amsterdam [u.a.] (DE-627)ELV007277822 volume:143 year:2020 pages:0 https://doi.org/10.1016/j.biombioe.2020.105807 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-INTRECHT SSG-OLC-PHA 44.72 Rechtsmedizin VZ AR 143 2020 0 |
spelling |
10.1016/j.biombioe.2020.105807 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001242.pica (DE-627)ELV052208915 (ELSEVIER)S0961-9534(20)30342-1 DE-627 ger DE-627 rakwb eng 340 610 VZ 2 ssgn INTRECHT DE-1a fid 44.72 bkl Davis, Maggie R. verfasserin aut Modeled economic potential for Eucalyptus spp. production for jet fuel additives in the United States 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended. Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended. Aviation biofuels Elsevier Mallee eucalypts Elsevier Bioenergy crops Elsevier Oil mallee Elsevier Short-rotation annual coppice Elsevier Kainer, David oth Tuskan, Gerald A. oth Langholtz, Matthew H. oth Hellwinckel, Chad M. oth Shedden, Magen oth Eaton, Laurence oth Enthalten in Elsevier Science Ubelaker, Douglas H. ELSEVIER Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil 2021 Amsterdam [u.a.] (DE-627)ELV007277822 volume:143 year:2020 pages:0 https://doi.org/10.1016/j.biombioe.2020.105807 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-INTRECHT SSG-OLC-PHA 44.72 Rechtsmedizin VZ AR 143 2020 0 |
allfields_unstemmed |
10.1016/j.biombioe.2020.105807 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001242.pica (DE-627)ELV052208915 (ELSEVIER)S0961-9534(20)30342-1 DE-627 ger DE-627 rakwb eng 340 610 VZ 2 ssgn INTRECHT DE-1a fid 44.72 bkl Davis, Maggie R. verfasserin aut Modeled economic potential for Eucalyptus spp. production for jet fuel additives in the United States 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended. Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended. Aviation biofuels Elsevier Mallee eucalypts Elsevier Bioenergy crops Elsevier Oil mallee Elsevier Short-rotation annual coppice Elsevier Kainer, David oth Tuskan, Gerald A. oth Langholtz, Matthew H. oth Hellwinckel, Chad M. oth Shedden, Magen oth Eaton, Laurence oth Enthalten in Elsevier Science Ubelaker, Douglas H. ELSEVIER Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil 2021 Amsterdam [u.a.] (DE-627)ELV007277822 volume:143 year:2020 pages:0 https://doi.org/10.1016/j.biombioe.2020.105807 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-INTRECHT SSG-OLC-PHA 44.72 Rechtsmedizin VZ AR 143 2020 0 |
allfieldsGer |
10.1016/j.biombioe.2020.105807 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001242.pica (DE-627)ELV052208915 (ELSEVIER)S0961-9534(20)30342-1 DE-627 ger DE-627 rakwb eng 340 610 VZ 2 ssgn INTRECHT DE-1a fid 44.72 bkl Davis, Maggie R. verfasserin aut Modeled economic potential for Eucalyptus spp. production for jet fuel additives in the United States 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended. Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended. Aviation biofuels Elsevier Mallee eucalypts Elsevier Bioenergy crops Elsevier Oil mallee Elsevier Short-rotation annual coppice Elsevier Kainer, David oth Tuskan, Gerald A. oth Langholtz, Matthew H. oth Hellwinckel, Chad M. oth Shedden, Magen oth Eaton, Laurence oth Enthalten in Elsevier Science Ubelaker, Douglas H. ELSEVIER Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil 2021 Amsterdam [u.a.] (DE-627)ELV007277822 volume:143 year:2020 pages:0 https://doi.org/10.1016/j.biombioe.2020.105807 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-INTRECHT SSG-OLC-PHA 44.72 Rechtsmedizin VZ AR 143 2020 0 |
allfieldsSound |
10.1016/j.biombioe.2020.105807 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001242.pica (DE-627)ELV052208915 (ELSEVIER)S0961-9534(20)30342-1 DE-627 ger DE-627 rakwb eng 340 610 VZ 2 ssgn INTRECHT DE-1a fid 44.72 bkl Davis, Maggie R. verfasserin aut Modeled economic potential for Eucalyptus spp. production for jet fuel additives in the United States 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended. Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended. Aviation biofuels Elsevier Mallee eucalypts Elsevier Bioenergy crops Elsevier Oil mallee Elsevier Short-rotation annual coppice Elsevier Kainer, David oth Tuskan, Gerald A. oth Langholtz, Matthew H. oth Hellwinckel, Chad M. oth Shedden, Magen oth Eaton, Laurence oth Enthalten in Elsevier Science Ubelaker, Douglas H. ELSEVIER Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil 2021 Amsterdam [u.a.] (DE-627)ELV007277822 volume:143 year:2020 pages:0 https://doi.org/10.1016/j.biombioe.2020.105807 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-INTRECHT SSG-OLC-PHA 44.72 Rechtsmedizin VZ AR 143 2020 0 |
language |
English |
source |
Enthalten in Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil Amsterdam [u.a.] volume:143 year:2020 pages:0 |
sourceStr |
Enthalten in Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil Amsterdam [u.a.] volume:143 year:2020 pages:0 |
format_phy_str_mv |
Article |
bklname |
Rechtsmedizin |
institution |
findex.gbv.de |
topic_facet |
Aviation biofuels Mallee eucalypts Bioenergy crops Oil mallee Short-rotation annual coppice |
dewey-raw |
340 |
isfreeaccess_bool |
false |
container_title |
Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil |
authorswithroles_txt_mv |
Davis, Maggie R. @@aut@@ Kainer, David @@oth@@ Tuskan, Gerald A. @@oth@@ Langholtz, Matthew H. @@oth@@ Hellwinckel, Chad M. @@oth@@ Shedden, Magen @@oth@@ Eaton, Laurence @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV007277822 |
dewey-sort |
3340 |
id |
ELV052208915 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052208915</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626032956.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.biombioe.2020.105807</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001242.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052208915</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0961-9534(20)30342-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">340</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">INTRECHT</subfield><subfield code="q">DE-1a</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Davis, Maggie R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeled economic potential for Eucalyptus spp. production for jet fuel additives in the United States</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Aviation biofuels</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mallee eucalypts</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bioenergy crops</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oil mallee</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Short-rotation annual coppice</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kainer, David</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tuskan, Gerald A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Langholtz, Matthew H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hellwinckel, Chad M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shedden, Magen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eaton, Laurence</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Ubelaker, Douglas H. ELSEVIER</subfield><subfield code="t">Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007277822</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:143</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.biombioe.2020.105807</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-INTRECHT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.72</subfield><subfield code="j">Rechtsmedizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">143</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Davis, Maggie R. |
spellingShingle |
Davis, Maggie R. ddc 340 ssgn 2 fid INTRECHT bkl 44.72 Elsevier Aviation biofuels Elsevier Mallee eucalypts Elsevier Bioenergy crops Elsevier Oil mallee Elsevier Short-rotation annual coppice Modeled economic potential for Eucalyptus spp. production for jet fuel additives in the United States |
authorStr |
Davis, Maggie R. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV007277822 |
format |
electronic Article |
dewey-ones |
340 - Law 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
340 610 VZ 2 ssgn INTRECHT DE-1a fid 44.72 bkl Modeled economic potential for Eucalyptus spp. production for jet fuel additives in the United States Aviation biofuels Elsevier Mallee eucalypts Elsevier Bioenergy crops Elsevier Oil mallee Elsevier Short-rotation annual coppice Elsevier |
topic |
ddc 340 ssgn 2 fid INTRECHT bkl 44.72 Elsevier Aviation biofuels Elsevier Mallee eucalypts Elsevier Bioenergy crops Elsevier Oil mallee Elsevier Short-rotation annual coppice |
topic_unstemmed |
ddc 340 ssgn 2 fid INTRECHT bkl 44.72 Elsevier Aviation biofuels Elsevier Mallee eucalypts Elsevier Bioenergy crops Elsevier Oil mallee Elsevier Short-rotation annual coppice |
topic_browse |
ddc 340 ssgn 2 fid INTRECHT bkl 44.72 Elsevier Aviation biofuels Elsevier Mallee eucalypts Elsevier Bioenergy crops Elsevier Oil mallee Elsevier Short-rotation annual coppice |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
d k dk g a t ga gat m h l mh mhl c m h cm cmh m s ms l e le |
hierarchy_parent_title |
Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil |
hierarchy_parent_id |
ELV007277822 |
dewey-tens |
340 - Law 610 - Medicine & health |
hierarchy_top_title |
Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV007277822 |
title |
Modeled economic potential for Eucalyptus spp. production for jet fuel additives in the United States |
ctrlnum |
(DE-627)ELV052208915 (ELSEVIER)S0961-9534(20)30342-1 |
title_full |
Modeled economic potential for Eucalyptus spp. production for jet fuel additives in the United States |
author_sort |
Davis, Maggie R. |
journal |
Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil |
journalStr |
Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Davis, Maggie R. |
container_volume |
143 |
class |
340 610 VZ 2 ssgn INTRECHT DE-1a fid 44.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Davis, Maggie R. |
doi_str_mv |
10.1016/j.biombioe.2020.105807 |
dewey-full |
340 610 |
title_sort |
modeled economic potential for eucalyptus spp. production for jet fuel additives in the united states |
title_auth |
Modeled economic potential for Eucalyptus spp. production for jet fuel additives in the United States |
abstract |
Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended. |
abstractGer |
Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended. |
abstract_unstemmed |
Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-INTRECHT SSG-OLC-PHA |
title_short |
Modeled economic potential for Eucalyptus spp. production for jet fuel additives in the United States |
url |
https://doi.org/10.1016/j.biombioe.2020.105807 |
remote_bool |
true |
author2 |
Kainer, David Tuskan, Gerald A. Langholtz, Matthew H. Hellwinckel, Chad M. Shedden, Magen Eaton, Laurence |
author2Str |
Kainer, David Tuskan, Gerald A. Langholtz, Matthew H. Hellwinckel, Chad M. Shedden, Magen Eaton, Laurence |
ppnlink |
ELV007277822 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.biombioe.2020.105807 |
up_date |
2024-07-06T22:24:01.709Z |
_version_ |
1803870159986753536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052208915</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626032956.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.biombioe.2020.105807</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001242.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052208915</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0961-9534(20)30342-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">340</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">INTRECHT</subfield><subfield code="q">DE-1a</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Davis, Maggie R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeled economic potential for Eucalyptus spp. production for jet fuel additives in the United States</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Feedstock price and availability remain a barrier to adoption of cellulosic biofuels. Eucalyptus spp., can produce an energy-dense terpene suitable for high-density synthetic hydrocarbon-type fuel (grade JP-10) production in addition to cellulosic-based feedstock for traditional jet fuels (e.g., grade Jet A) and gasoline. This study modeled economic potential for Eucalyptus to fulfill US fuel markets. Cold-tolerant Eucalyptus was simulated in an annual coppice system for maximized leaf production. Results of the lowest simulated price ($110 t−1) show that within 10 years, there is potential to produce 204 million L yr−1 of fuel, including 51 million L yr−1 of JP-10-type fuel, 75 million L yr−1 of Jet A type fuel, and 77 million L yr−1 of gasoline. These quantities of fuel could be valued at approximately $500 million (USD), with feedstock costs totaling approximately $100 million (USD). Longer-term markets (to 20 years) or higher priced (to $220 t−1) scenarios show potential for more production. Research to determine potential for genetic improvement, delivered fuel costs, and biorefinery siting near existing infrastructure is recommended.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Aviation biofuels</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mallee eucalypts</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bioenergy crops</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oil mallee</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Short-rotation annual coppice</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kainer, David</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tuskan, Gerald A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Langholtz, Matthew H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hellwinckel, Chad M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shedden, Magen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eaton, Laurence</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Ubelaker, Douglas H. ELSEVIER</subfield><subfield code="t">Lag time of modern bomb-pulse radiocarbon in human bone tissues: New data from Brazil</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007277822</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:143</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.biombioe.2020.105807</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-INTRECHT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.72</subfield><subfield code="j">Rechtsmedizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">143</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4012136 |