Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development
• RFCM algorithm removes drawbacks of the FCM algorithm. • RFCM algorithm eliminates interactions among clusters. • RFCM algorithm is suitable for data highly contaminated with noise and outliers. • RFCM algorithm is suitable for data with different cluster densities and sizes.
Autor*in: |
Askari, Salar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Do denture processing techniques affect the mechanical properties of denture teeth? - Clements, Jody L. ELSEVIER, 2017, an international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:165 ; year:2021 ; day:1 ; month:03 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.eswa.2020.113856 |
---|
Katalog-ID: |
ELV052445763 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV052445763 | ||
003 | DE-627 | ||
005 | 20230624184029.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.eswa.2020.113856 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001324.pica |
035 | |a (DE-627)ELV052445763 | ||
035 | |a (ELSEVIER)S0957-4174(20)30667-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.96 |2 bkl | ||
100 | 1 | |a Askari, Salar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • RFCM algorithm removes drawbacks of the FCM algorithm. • RFCM algorithm eliminates interactions among clusters. • RFCM algorithm is suitable for data highly contaminated with noise and outliers. • RFCM algorithm is suitable for data with different cluster densities and sizes. | ||
650 | 7 | |a Outlier |2 Elsevier | |
650 | 7 | |a FCM |2 Elsevier | |
650 | 7 | |a Noise |2 Elsevier | |
650 | 7 | |a Fuzzy C-Means |2 Elsevier | |
650 | 7 | |a Unequal clusters |2 Elsevier | |
650 | 7 | |a Clustering |2 Elsevier | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Clements, Jody L. ELSEVIER |t Do denture processing techniques affect the mechanical properties of denture teeth? |d 2017 |d an international journal |g Amsterdam [u.a.] |w (DE-627)ELV000222070 |
773 | 1 | 8 | |g volume:165 |g year:2021 |g day:1 |g month:03 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.eswa.2020.113856 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.96 |j Zahnmedizin |q VZ |
951 | |a AR | ||
952 | |d 165 |j 2021 |b 1 |c 0301 |h 0 |
author_variant |
s a sa |
---|---|
matchkey_str |
askarisalar:2021----:uzcencutrnagrtmodtwtueullseszsncnaiaewtnie |
hierarchy_sort_str |
2021 |
bklnumber |
44.96 |
publishDate |
2021 |
allfields |
10.1016/j.eswa.2020.113856 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001324.pica (DE-627)ELV052445763 (ELSEVIER)S0957-4174(20)30667-9 DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Askari, Salar verfasserin aut Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • RFCM algorithm removes drawbacks of the FCM algorithm. • RFCM algorithm eliminates interactions among clusters. • RFCM algorithm is suitable for data highly contaminated with noise and outliers. • RFCM algorithm is suitable for data with different cluster densities and sizes. Outlier Elsevier FCM Elsevier Noise Elsevier Fuzzy C-Means Elsevier Unequal clusters Elsevier Clustering Elsevier Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:165 year:2021 day:1 month:03 pages:0 https://doi.org/10.1016/j.eswa.2020.113856 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 165 2021 1 0301 0 |
spelling |
10.1016/j.eswa.2020.113856 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001324.pica (DE-627)ELV052445763 (ELSEVIER)S0957-4174(20)30667-9 DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Askari, Salar verfasserin aut Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • RFCM algorithm removes drawbacks of the FCM algorithm. • RFCM algorithm eliminates interactions among clusters. • RFCM algorithm is suitable for data highly contaminated with noise and outliers. • RFCM algorithm is suitable for data with different cluster densities and sizes. Outlier Elsevier FCM Elsevier Noise Elsevier Fuzzy C-Means Elsevier Unequal clusters Elsevier Clustering Elsevier Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:165 year:2021 day:1 month:03 pages:0 https://doi.org/10.1016/j.eswa.2020.113856 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 165 2021 1 0301 0 |
allfields_unstemmed |
10.1016/j.eswa.2020.113856 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001324.pica (DE-627)ELV052445763 (ELSEVIER)S0957-4174(20)30667-9 DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Askari, Salar verfasserin aut Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • RFCM algorithm removes drawbacks of the FCM algorithm. • RFCM algorithm eliminates interactions among clusters. • RFCM algorithm is suitable for data highly contaminated with noise and outliers. • RFCM algorithm is suitable for data with different cluster densities and sizes. Outlier Elsevier FCM Elsevier Noise Elsevier Fuzzy C-Means Elsevier Unequal clusters Elsevier Clustering Elsevier Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:165 year:2021 day:1 month:03 pages:0 https://doi.org/10.1016/j.eswa.2020.113856 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 165 2021 1 0301 0 |
allfieldsGer |
10.1016/j.eswa.2020.113856 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001324.pica (DE-627)ELV052445763 (ELSEVIER)S0957-4174(20)30667-9 DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Askari, Salar verfasserin aut Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • RFCM algorithm removes drawbacks of the FCM algorithm. • RFCM algorithm eliminates interactions among clusters. • RFCM algorithm is suitable for data highly contaminated with noise and outliers. • RFCM algorithm is suitable for data with different cluster densities and sizes. Outlier Elsevier FCM Elsevier Noise Elsevier Fuzzy C-Means Elsevier Unequal clusters Elsevier Clustering Elsevier Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:165 year:2021 day:1 month:03 pages:0 https://doi.org/10.1016/j.eswa.2020.113856 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 165 2021 1 0301 0 |
allfieldsSound |
10.1016/j.eswa.2020.113856 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001324.pica (DE-627)ELV052445763 (ELSEVIER)S0957-4174(20)30667-9 DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Askari, Salar verfasserin aut Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • RFCM algorithm removes drawbacks of the FCM algorithm. • RFCM algorithm eliminates interactions among clusters. • RFCM algorithm is suitable for data highly contaminated with noise and outliers. • RFCM algorithm is suitable for data with different cluster densities and sizes. Outlier Elsevier FCM Elsevier Noise Elsevier Fuzzy C-Means Elsevier Unequal clusters Elsevier Clustering Elsevier Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:165 year:2021 day:1 month:03 pages:0 https://doi.org/10.1016/j.eswa.2020.113856 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 165 2021 1 0301 0 |
language |
English |
source |
Enthalten in Do denture processing techniques affect the mechanical properties of denture teeth? Amsterdam [u.a.] volume:165 year:2021 day:1 month:03 pages:0 |
sourceStr |
Enthalten in Do denture processing techniques affect the mechanical properties of denture teeth? Amsterdam [u.a.] volume:165 year:2021 day:1 month:03 pages:0 |
format_phy_str_mv |
Article |
bklname |
Zahnmedizin |
institution |
findex.gbv.de |
topic_facet |
Outlier FCM Noise Fuzzy C-Means Unequal clusters Clustering |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Do denture processing techniques affect the mechanical properties of denture teeth? |
authorswithroles_txt_mv |
Askari, Salar @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV000222070 |
dewey-sort |
3610 |
id |
ELV052445763 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052445763</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624184029.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2020.113856</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001324.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052445763</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(20)30667-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.96</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Askari, Salar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• RFCM algorithm removes drawbacks of the FCM algorithm. • RFCM algorithm eliminates interactions among clusters. • RFCM algorithm is suitable for data highly contaminated with noise and outliers. • RFCM algorithm is suitable for data with different cluster densities and sizes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Outlier</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FCM</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Noise</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fuzzy C-Means</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Unequal clusters</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Clustering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Clements, Jody L. ELSEVIER</subfield><subfield code="t">Do denture processing techniques affect the mechanical properties of denture teeth?</subfield><subfield code="d">2017</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000222070</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.eswa.2020.113856</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.96</subfield><subfield code="j">Zahnmedizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield><subfield code="j">2021</subfield><subfield code="b">1</subfield><subfield code="c">0301</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Askari, Salar |
spellingShingle |
Askari, Salar ddc 610 bkl 44.96 Elsevier Outlier Elsevier FCM Elsevier Noise Elsevier Fuzzy C-Means Elsevier Unequal clusters Elsevier Clustering Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development |
authorStr |
Askari, Salar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000222070 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.96 bkl Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development Outlier Elsevier FCM Elsevier Noise Elsevier Fuzzy C-Means Elsevier Unequal clusters Elsevier Clustering Elsevier |
topic |
ddc 610 bkl 44.96 Elsevier Outlier Elsevier FCM Elsevier Noise Elsevier Fuzzy C-Means Elsevier Unequal clusters Elsevier Clustering |
topic_unstemmed |
ddc 610 bkl 44.96 Elsevier Outlier Elsevier FCM Elsevier Noise Elsevier Fuzzy C-Means Elsevier Unequal clusters Elsevier Clustering |
topic_browse |
ddc 610 bkl 44.96 Elsevier Outlier Elsevier FCM Elsevier Noise Elsevier Fuzzy C-Means Elsevier Unequal clusters Elsevier Clustering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
hierarchy_parent_title |
Do denture processing techniques affect the mechanical properties of denture teeth? |
hierarchy_parent_id |
ELV000222070 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Do denture processing techniques affect the mechanical properties of denture teeth? |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000222070 |
title |
Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development |
ctrlnum |
(DE-627)ELV052445763 (ELSEVIER)S0957-4174(20)30667-9 |
title_full |
Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development |
author_sort |
Askari, Salar |
journal |
Do denture processing techniques affect the mechanical properties of denture teeth? |
journalStr |
Do denture processing techniques affect the mechanical properties of denture teeth? |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Askari, Salar |
container_volume |
165 |
class |
610 VZ 44.96 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Askari, Salar |
doi_str_mv |
10.1016/j.eswa.2020.113856 |
dewey-full |
610 |
title_sort |
fuzzy c-means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: review and development |
title_auth |
Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development |
abstract |
• RFCM algorithm removes drawbacks of the FCM algorithm. • RFCM algorithm eliminates interactions among clusters. • RFCM algorithm is suitable for data highly contaminated with noise and outliers. • RFCM algorithm is suitable for data with different cluster densities and sizes. |
abstractGer |
• RFCM algorithm removes drawbacks of the FCM algorithm. • RFCM algorithm eliminates interactions among clusters. • RFCM algorithm is suitable for data highly contaminated with noise and outliers. • RFCM algorithm is suitable for data with different cluster densities and sizes. |
abstract_unstemmed |
• RFCM algorithm removes drawbacks of the FCM algorithm. • RFCM algorithm eliminates interactions among clusters. • RFCM algorithm is suitable for data highly contaminated with noise and outliers. • RFCM algorithm is suitable for data with different cluster densities and sizes. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development |
url |
https://doi.org/10.1016/j.eswa.2020.113856 |
remote_bool |
true |
ppnlink |
ELV000222070 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.eswa.2020.113856 |
up_date |
2024-07-06T23:02:52.921Z |
_version_ |
1803872604438659072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052445763</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624184029.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2020.113856</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001324.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052445763</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(20)30667-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.96</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Askari, Salar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• RFCM algorithm removes drawbacks of the FCM algorithm. • RFCM algorithm eliminates interactions among clusters. • RFCM algorithm is suitable for data highly contaminated with noise and outliers. • RFCM algorithm is suitable for data with different cluster densities and sizes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Outlier</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FCM</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Noise</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fuzzy C-Means</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Unequal clusters</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Clustering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Clements, Jody L. ELSEVIER</subfield><subfield code="t">Do denture processing techniques affect the mechanical properties of denture teeth?</subfield><subfield code="d">2017</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000222070</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.eswa.2020.113856</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.96</subfield><subfield code="j">Zahnmedizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield><subfield code="j">2021</subfield><subfield code="b">1</subfield><subfield code="c">0301</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4026213 |