Analyzing regularity of interpolar air motion and heat dissipation coefficient distribution of a salient pole synchronous generator considering rotary airflow
The extreme attention should be paid to cooling performance of air-cooled synchronous generators in order to ensure that the temperature rise of each part is within the allowable range. It is necessary to know losses distribution, cooling airflow rate distribution laws, heat dissipation coefficient...
Ausführliche Beschreibung
Autor*in: |
Li, Dan [verfasserIn] Li, Weili [verfasserIn] Li, Jinyang [verfasserIn] Liu, Xiaoke [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International communications in heat and mass transfer - Amsterdam [u.a.] : Elsevier Science, 1983, 119 |
---|---|
Übergeordnetes Werk: |
volume:119 |
DOI / URN: |
10.1016/j.icheatmasstransfer.2020.104828 |
---|
Katalog-ID: |
ELV052477126 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV052477126 | ||
003 | DE-627 | ||
005 | 20240104093003.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.icheatmasstransfer.2020.104828 |2 doi | |
035 | |a (DE-627)ELV052477126 | ||
035 | |a (ELSEVIER)S0735-1933(20)30356-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Li, Dan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analyzing regularity of interpolar air motion and heat dissipation coefficient distribution of a salient pole synchronous generator considering rotary airflow |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The extreme attention should be paid to cooling performance of air-cooled synchronous generators in order to ensure that the temperature rise of each part is within the allowable range. It is necessary to know losses distribution, cooling airflow rate distribution laws, heat dissipation coefficient distribution and temperature distribution characteristics. Considering the influence of rotary airflow and yoke ventilation duct structure on air motion, the physical parameters and the motion characteristics of interpolar air were analyzed in three cases. These cases were considered respectively when the rotor was in a rotating or non- rotating state and the yoke ventilation ducts were intake air, and when the rotor was in a rotating state and the yoke ventilation ducts were not intake air. Based on Multi-Reference Frame, the finite volume method was used to solve the fluid-solid coupling numerical simulation of the solving domain. Taking a 250 MW air-cooled hydro-generator as an example, the air velocity of each air cooler was measured and the inlet air velocity of the rotor support was calculated. By calculating the average temperature of the excitation winding in the steady state, the measured value and the simulation result were compared, and the correctness of the calculation method was verified. | ||
650 | 4 | |a Air-cooled | |
650 | 4 | |a Hydro-generator | |
650 | 4 | |a Rotary airflow | |
650 | 4 | |a Yoke ventilation duct | |
650 | 4 | |a Heat dissipation coefficient | |
650 | 4 | |a Fluid-solid coupling numerical simulation | |
700 | 1 | |a Li, Weili |e verfasserin |4 aut | |
700 | 1 | |a Li, Jinyang |e verfasserin |4 aut | |
700 | 1 | |a Liu, Xiaoke |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International communications in heat and mass transfer |d Amsterdam [u.a.] : Elsevier Science, 1983 |g 119 |h Online-Ressource |w (DE-627)320604373 |w (DE-600)2020560-0 |w (DE-576)096806710 |7 nnns |
773 | 1 | 8 | |g volume:119 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 119 |
author_variant |
d l dl w l wl j l jl x l xl |
---|---|
matchkey_str |
lidanliweililijinyangliuxiaoke:2020----:nlznrglrtoitroaaroinnhadsiainofiindsrbtooaainplsnho |
hierarchy_sort_str |
2020 |
bklnumber |
50.38 |
publishDate |
2020 |
allfields |
10.1016/j.icheatmasstransfer.2020.104828 doi (DE-627)ELV052477126 (ELSEVIER)S0735-1933(20)30356-0 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Dan verfasserin aut Analyzing regularity of interpolar air motion and heat dissipation coefficient distribution of a salient pole synchronous generator considering rotary airflow 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The extreme attention should be paid to cooling performance of air-cooled synchronous generators in order to ensure that the temperature rise of each part is within the allowable range. It is necessary to know losses distribution, cooling airflow rate distribution laws, heat dissipation coefficient distribution and temperature distribution characteristics. Considering the influence of rotary airflow and yoke ventilation duct structure on air motion, the physical parameters and the motion characteristics of interpolar air were analyzed in three cases. These cases were considered respectively when the rotor was in a rotating or non- rotating state and the yoke ventilation ducts were intake air, and when the rotor was in a rotating state and the yoke ventilation ducts were not intake air. Based on Multi-Reference Frame, the finite volume method was used to solve the fluid-solid coupling numerical simulation of the solving domain. Taking a 250 MW air-cooled hydro-generator as an example, the air velocity of each air cooler was measured and the inlet air velocity of the rotor support was calculated. By calculating the average temperature of the excitation winding in the steady state, the measured value and the simulation result were compared, and the correctness of the calculation method was verified. Air-cooled Hydro-generator Rotary airflow Yoke ventilation duct Heat dissipation coefficient Fluid-solid coupling numerical simulation Li, Weili verfasserin aut Li, Jinyang verfasserin aut Liu, Xiaoke verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 119 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:119 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik VZ AR 119 |
spelling |
10.1016/j.icheatmasstransfer.2020.104828 doi (DE-627)ELV052477126 (ELSEVIER)S0735-1933(20)30356-0 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Dan verfasserin aut Analyzing regularity of interpolar air motion and heat dissipation coefficient distribution of a salient pole synchronous generator considering rotary airflow 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The extreme attention should be paid to cooling performance of air-cooled synchronous generators in order to ensure that the temperature rise of each part is within the allowable range. It is necessary to know losses distribution, cooling airflow rate distribution laws, heat dissipation coefficient distribution and temperature distribution characteristics. Considering the influence of rotary airflow and yoke ventilation duct structure on air motion, the physical parameters and the motion characteristics of interpolar air were analyzed in three cases. These cases were considered respectively when the rotor was in a rotating or non- rotating state and the yoke ventilation ducts were intake air, and when the rotor was in a rotating state and the yoke ventilation ducts were not intake air. Based on Multi-Reference Frame, the finite volume method was used to solve the fluid-solid coupling numerical simulation of the solving domain. Taking a 250 MW air-cooled hydro-generator as an example, the air velocity of each air cooler was measured and the inlet air velocity of the rotor support was calculated. By calculating the average temperature of the excitation winding in the steady state, the measured value and the simulation result were compared, and the correctness of the calculation method was verified. Air-cooled Hydro-generator Rotary airflow Yoke ventilation duct Heat dissipation coefficient Fluid-solid coupling numerical simulation Li, Weili verfasserin aut Li, Jinyang verfasserin aut Liu, Xiaoke verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 119 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:119 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik VZ AR 119 |
allfields_unstemmed |
10.1016/j.icheatmasstransfer.2020.104828 doi (DE-627)ELV052477126 (ELSEVIER)S0735-1933(20)30356-0 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Dan verfasserin aut Analyzing regularity of interpolar air motion and heat dissipation coefficient distribution of a salient pole synchronous generator considering rotary airflow 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The extreme attention should be paid to cooling performance of air-cooled synchronous generators in order to ensure that the temperature rise of each part is within the allowable range. It is necessary to know losses distribution, cooling airflow rate distribution laws, heat dissipation coefficient distribution and temperature distribution characteristics. Considering the influence of rotary airflow and yoke ventilation duct structure on air motion, the physical parameters and the motion characteristics of interpolar air were analyzed in three cases. These cases were considered respectively when the rotor was in a rotating or non- rotating state and the yoke ventilation ducts were intake air, and when the rotor was in a rotating state and the yoke ventilation ducts were not intake air. Based on Multi-Reference Frame, the finite volume method was used to solve the fluid-solid coupling numerical simulation of the solving domain. Taking a 250 MW air-cooled hydro-generator as an example, the air velocity of each air cooler was measured and the inlet air velocity of the rotor support was calculated. By calculating the average temperature of the excitation winding in the steady state, the measured value and the simulation result were compared, and the correctness of the calculation method was verified. Air-cooled Hydro-generator Rotary airflow Yoke ventilation duct Heat dissipation coefficient Fluid-solid coupling numerical simulation Li, Weili verfasserin aut Li, Jinyang verfasserin aut Liu, Xiaoke verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 119 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:119 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik VZ AR 119 |
allfieldsGer |
10.1016/j.icheatmasstransfer.2020.104828 doi (DE-627)ELV052477126 (ELSEVIER)S0735-1933(20)30356-0 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Dan verfasserin aut Analyzing regularity of interpolar air motion and heat dissipation coefficient distribution of a salient pole synchronous generator considering rotary airflow 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The extreme attention should be paid to cooling performance of air-cooled synchronous generators in order to ensure that the temperature rise of each part is within the allowable range. It is necessary to know losses distribution, cooling airflow rate distribution laws, heat dissipation coefficient distribution and temperature distribution characteristics. Considering the influence of rotary airflow and yoke ventilation duct structure on air motion, the physical parameters and the motion characteristics of interpolar air were analyzed in three cases. These cases were considered respectively when the rotor was in a rotating or non- rotating state and the yoke ventilation ducts were intake air, and when the rotor was in a rotating state and the yoke ventilation ducts were not intake air. Based on Multi-Reference Frame, the finite volume method was used to solve the fluid-solid coupling numerical simulation of the solving domain. Taking a 250 MW air-cooled hydro-generator as an example, the air velocity of each air cooler was measured and the inlet air velocity of the rotor support was calculated. By calculating the average temperature of the excitation winding in the steady state, the measured value and the simulation result were compared, and the correctness of the calculation method was verified. Air-cooled Hydro-generator Rotary airflow Yoke ventilation duct Heat dissipation coefficient Fluid-solid coupling numerical simulation Li, Weili verfasserin aut Li, Jinyang verfasserin aut Liu, Xiaoke verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 119 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:119 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik VZ AR 119 |
allfieldsSound |
10.1016/j.icheatmasstransfer.2020.104828 doi (DE-627)ELV052477126 (ELSEVIER)S0735-1933(20)30356-0 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Dan verfasserin aut Analyzing regularity of interpolar air motion and heat dissipation coefficient distribution of a salient pole synchronous generator considering rotary airflow 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The extreme attention should be paid to cooling performance of air-cooled synchronous generators in order to ensure that the temperature rise of each part is within the allowable range. It is necessary to know losses distribution, cooling airflow rate distribution laws, heat dissipation coefficient distribution and temperature distribution characteristics. Considering the influence of rotary airflow and yoke ventilation duct structure on air motion, the physical parameters and the motion characteristics of interpolar air were analyzed in three cases. These cases were considered respectively when the rotor was in a rotating or non- rotating state and the yoke ventilation ducts were intake air, and when the rotor was in a rotating state and the yoke ventilation ducts were not intake air. Based on Multi-Reference Frame, the finite volume method was used to solve the fluid-solid coupling numerical simulation of the solving domain. Taking a 250 MW air-cooled hydro-generator as an example, the air velocity of each air cooler was measured and the inlet air velocity of the rotor support was calculated. By calculating the average temperature of the excitation winding in the steady state, the measured value and the simulation result were compared, and the correctness of the calculation method was verified. Air-cooled Hydro-generator Rotary airflow Yoke ventilation duct Heat dissipation coefficient Fluid-solid coupling numerical simulation Li, Weili verfasserin aut Li, Jinyang verfasserin aut Liu, Xiaoke verfasserin aut Enthalten in International communications in heat and mass transfer Amsterdam [u.a.] : Elsevier Science, 1983 119 Online-Ressource (DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 nnns volume:119 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik VZ AR 119 |
language |
English |
source |
Enthalten in International communications in heat and mass transfer 119 volume:119 |
sourceStr |
Enthalten in International communications in heat and mass transfer 119 volume:119 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Air-cooled Hydro-generator Rotary airflow Yoke ventilation duct Heat dissipation coefficient Fluid-solid coupling numerical simulation |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International communications in heat and mass transfer |
authorswithroles_txt_mv |
Li, Dan @@aut@@ Li, Weili @@aut@@ Li, Jinyang @@aut@@ Liu, Xiaoke @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
320604373 |
dewey-sort |
3620 |
id |
ELV052477126 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052477126</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240104093003.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.icheatmasstransfer.2020.104828</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052477126</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0735-1933(20)30356-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Dan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analyzing regularity of interpolar air motion and heat dissipation coefficient distribution of a salient pole synchronous generator considering rotary airflow</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The extreme attention should be paid to cooling performance of air-cooled synchronous generators in order to ensure that the temperature rise of each part is within the allowable range. It is necessary to know losses distribution, cooling airflow rate distribution laws, heat dissipation coefficient distribution and temperature distribution characteristics. Considering the influence of rotary airflow and yoke ventilation duct structure on air motion, the physical parameters and the motion characteristics of interpolar air were analyzed in three cases. These cases were considered respectively when the rotor was in a rotating or non- rotating state and the yoke ventilation ducts were intake air, and when the rotor was in a rotating state and the yoke ventilation ducts were not intake air. Based on Multi-Reference Frame, the finite volume method was used to solve the fluid-solid coupling numerical simulation of the solving domain. Taking a 250 MW air-cooled hydro-generator as an example, the air velocity of each air cooler was measured and the inlet air velocity of the rotor support was calculated. By calculating the average temperature of the excitation winding in the steady state, the measured value and the simulation result were compared, and the correctness of the calculation method was verified.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air-cooled</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydro-generator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rotary airflow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yoke ventilation duct</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat dissipation coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid-solid coupling numerical simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Weili</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jinyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xiaoke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International communications in heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">119</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320604373</subfield><subfield code="w">(DE-600)2020560-0</subfield><subfield code="w">(DE-576)096806710</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">119</subfield></datafield></record></collection>
|
author |
Li, Dan |
spellingShingle |
Li, Dan ddc 620 bkl 50.38 misc Air-cooled misc Hydro-generator misc Rotary airflow misc Yoke ventilation duct misc Heat dissipation coefficient misc Fluid-solid coupling numerical simulation Analyzing regularity of interpolar air motion and heat dissipation coefficient distribution of a salient pole synchronous generator considering rotary airflow |
authorStr |
Li, Dan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320604373 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 VZ 50.38 bkl Analyzing regularity of interpolar air motion and heat dissipation coefficient distribution of a salient pole synchronous generator considering rotary airflow Air-cooled Hydro-generator Rotary airflow Yoke ventilation duct Heat dissipation coefficient Fluid-solid coupling numerical simulation |
topic |
ddc 620 bkl 50.38 misc Air-cooled misc Hydro-generator misc Rotary airflow misc Yoke ventilation duct misc Heat dissipation coefficient misc Fluid-solid coupling numerical simulation |
topic_unstemmed |
ddc 620 bkl 50.38 misc Air-cooled misc Hydro-generator misc Rotary airflow misc Yoke ventilation duct misc Heat dissipation coefficient misc Fluid-solid coupling numerical simulation |
topic_browse |
ddc 620 bkl 50.38 misc Air-cooled misc Hydro-generator misc Rotary airflow misc Yoke ventilation duct misc Heat dissipation coefficient misc Fluid-solid coupling numerical simulation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International communications in heat and mass transfer |
hierarchy_parent_id |
320604373 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International communications in heat and mass transfer |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320604373 (DE-600)2020560-0 (DE-576)096806710 |
title |
Analyzing regularity of interpolar air motion and heat dissipation coefficient distribution of a salient pole synchronous generator considering rotary airflow |
ctrlnum |
(DE-627)ELV052477126 (ELSEVIER)S0735-1933(20)30356-0 |
title_full |
Analyzing regularity of interpolar air motion and heat dissipation coefficient distribution of a salient pole synchronous generator considering rotary airflow |
author_sort |
Li, Dan |
journal |
International communications in heat and mass transfer |
journalStr |
International communications in heat and mass transfer |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Li, Dan Li, Weili Li, Jinyang Liu, Xiaoke |
container_volume |
119 |
class |
620 VZ 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Dan |
doi_str_mv |
10.1016/j.icheatmasstransfer.2020.104828 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
analyzing regularity of interpolar air motion and heat dissipation coefficient distribution of a salient pole synchronous generator considering rotary airflow |
title_auth |
Analyzing regularity of interpolar air motion and heat dissipation coefficient distribution of a salient pole synchronous generator considering rotary airflow |
abstract |
The extreme attention should be paid to cooling performance of air-cooled synchronous generators in order to ensure that the temperature rise of each part is within the allowable range. It is necessary to know losses distribution, cooling airflow rate distribution laws, heat dissipation coefficient distribution and temperature distribution characteristics. Considering the influence of rotary airflow and yoke ventilation duct structure on air motion, the physical parameters and the motion characteristics of interpolar air were analyzed in three cases. These cases were considered respectively when the rotor was in a rotating or non- rotating state and the yoke ventilation ducts were intake air, and when the rotor was in a rotating state and the yoke ventilation ducts were not intake air. Based on Multi-Reference Frame, the finite volume method was used to solve the fluid-solid coupling numerical simulation of the solving domain. Taking a 250 MW air-cooled hydro-generator as an example, the air velocity of each air cooler was measured and the inlet air velocity of the rotor support was calculated. By calculating the average temperature of the excitation winding in the steady state, the measured value and the simulation result were compared, and the correctness of the calculation method was verified. |
abstractGer |
The extreme attention should be paid to cooling performance of air-cooled synchronous generators in order to ensure that the temperature rise of each part is within the allowable range. It is necessary to know losses distribution, cooling airflow rate distribution laws, heat dissipation coefficient distribution and temperature distribution characteristics. Considering the influence of rotary airflow and yoke ventilation duct structure on air motion, the physical parameters and the motion characteristics of interpolar air were analyzed in three cases. These cases were considered respectively when the rotor was in a rotating or non- rotating state and the yoke ventilation ducts were intake air, and when the rotor was in a rotating state and the yoke ventilation ducts were not intake air. Based on Multi-Reference Frame, the finite volume method was used to solve the fluid-solid coupling numerical simulation of the solving domain. Taking a 250 MW air-cooled hydro-generator as an example, the air velocity of each air cooler was measured and the inlet air velocity of the rotor support was calculated. By calculating the average temperature of the excitation winding in the steady state, the measured value and the simulation result were compared, and the correctness of the calculation method was verified. |
abstract_unstemmed |
The extreme attention should be paid to cooling performance of air-cooled synchronous generators in order to ensure that the temperature rise of each part is within the allowable range. It is necessary to know losses distribution, cooling airflow rate distribution laws, heat dissipation coefficient distribution and temperature distribution characteristics. Considering the influence of rotary airflow and yoke ventilation duct structure on air motion, the physical parameters and the motion characteristics of interpolar air were analyzed in three cases. These cases were considered respectively when the rotor was in a rotating or non- rotating state and the yoke ventilation ducts were intake air, and when the rotor was in a rotating state and the yoke ventilation ducts were not intake air. Based on Multi-Reference Frame, the finite volume method was used to solve the fluid-solid coupling numerical simulation of the solving domain. Taking a 250 MW air-cooled hydro-generator as an example, the air velocity of each air cooler was measured and the inlet air velocity of the rotor support was calculated. By calculating the average temperature of the excitation winding in the steady state, the measured value and the simulation result were compared, and the correctness of the calculation method was verified. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Analyzing regularity of interpolar air motion and heat dissipation coefficient distribution of a salient pole synchronous generator considering rotary airflow |
remote_bool |
true |
author2 |
Li, Weili Li, Jinyang Liu, Xiaoke |
author2Str |
Li, Weili Li, Jinyang Liu, Xiaoke |
ppnlink |
320604373 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.icheatmasstransfer.2020.104828 |
up_date |
2024-07-06T23:08:18.974Z |
_version_ |
1803872946330009601 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052477126</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240104093003.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.icheatmasstransfer.2020.104828</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052477126</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0735-1933(20)30356-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Dan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analyzing regularity of interpolar air motion and heat dissipation coefficient distribution of a salient pole synchronous generator considering rotary airflow</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The extreme attention should be paid to cooling performance of air-cooled synchronous generators in order to ensure that the temperature rise of each part is within the allowable range. It is necessary to know losses distribution, cooling airflow rate distribution laws, heat dissipation coefficient distribution and temperature distribution characteristics. Considering the influence of rotary airflow and yoke ventilation duct structure on air motion, the physical parameters and the motion characteristics of interpolar air were analyzed in three cases. These cases were considered respectively when the rotor was in a rotating or non- rotating state and the yoke ventilation ducts were intake air, and when the rotor was in a rotating state and the yoke ventilation ducts were not intake air. Based on Multi-Reference Frame, the finite volume method was used to solve the fluid-solid coupling numerical simulation of the solving domain. Taking a 250 MW air-cooled hydro-generator as an example, the air velocity of each air cooler was measured and the inlet air velocity of the rotor support was calculated. By calculating the average temperature of the excitation winding in the steady state, the measured value and the simulation result were compared, and the correctness of the calculation method was verified.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air-cooled</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydro-generator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rotary airflow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yoke ventilation duct</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat dissipation coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid-solid coupling numerical simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Weili</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jinyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xiaoke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International communications in heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">119</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320604373</subfield><subfield code="w">(DE-600)2020560-0</subfield><subfield code="w">(DE-576)096806710</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">119</subfield></datafield></record></collection>
|
score |
7.4000044 |