Association between urinary organophosphate flame retardant diesters and steroid hormones: A metabolomic study on type 2 diabetes mellitus cases and controls
Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPF...
Ausführliche Beschreibung
Autor*in: |
Ji, Yan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Übergeordnetes Werk: |
Enthalten in: SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota - Wang, Meimei ELSEVIER, 2018, an international journal for scientific research into the environment and its relationship with man, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:756 ; year:2021 ; day:20 ; month:02 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.scitotenv.2020.143836 |
---|
Katalog-ID: |
ELV052534111 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV052534111 | ||
003 | DE-627 | ||
005 | 20230626033413.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.scitotenv.2020.143836 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001332.pica |
035 | |a (DE-627)ELV052534111 | ||
035 | |a (ELSEVIER)S0048-9697(20)37367-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |a 610 |q VZ |
100 | 1 | |a Ji, Yan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Association between urinary organophosphate flame retardant diesters and steroid hormones: A metabolomic study on type 2 diabetes mellitus cases and controls |
264 | 1 | |c 2021transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters. | ||
520 | |a Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters. | ||
700 | 1 | |a Yao, Yiming |4 oth | |
700 | 1 | |a Duan, Yishuang |4 oth | |
700 | 1 | |a Zhao, Hongzhi |4 oth | |
700 | 1 | |a Hong, Yanjun |4 oth | |
700 | 1 | |a Cai, Zongwei |4 oth | |
700 | 1 | |a Sun, Hongwen |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Wang, Meimei ELSEVIER |t SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |d 2018 |d an international journal for scientific research into the environment and its relationship with man |g Amsterdam [u.a.] |w (DE-627)ELV001360035 |
773 | 1 | 8 | |g volume:756 |g year:2021 |g day:20 |g month:02 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.scitotenv.2020.143836 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 756 |j 2021 |b 20 |c 0220 |h 0 |
author_variant |
y j yj |
---|---|
matchkey_str |
jiyanyaoyimingduanyishuangzhaohongzhihon:2021----:soitobtenrnrognpopaelmrtratisesnseodomnsmtblmctdotp |
hierarchy_sort_str |
2021transfer abstract |
publishDate |
2021 |
allfields |
10.1016/j.scitotenv.2020.143836 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001332.pica (DE-627)ELV052534111 (ELSEVIER)S0048-9697(20)37367-8 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Ji, Yan verfasserin aut Association between urinary organophosphate flame retardant diesters and steroid hormones: A metabolomic study on type 2 diabetes mellitus cases and controls 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters. Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters. Yao, Yiming oth Duan, Yishuang oth Zhao, Hongzhi oth Hong, Yanjun oth Cai, Zongwei oth Sun, Hongwen oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:756 year:2021 day:20 month:02 pages:0 https://doi.org/10.1016/j.scitotenv.2020.143836 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 756 2021 20 0220 0 |
spelling |
10.1016/j.scitotenv.2020.143836 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001332.pica (DE-627)ELV052534111 (ELSEVIER)S0048-9697(20)37367-8 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Ji, Yan verfasserin aut Association between urinary organophosphate flame retardant diesters and steroid hormones: A metabolomic study on type 2 diabetes mellitus cases and controls 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters. Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters. Yao, Yiming oth Duan, Yishuang oth Zhao, Hongzhi oth Hong, Yanjun oth Cai, Zongwei oth Sun, Hongwen oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:756 year:2021 day:20 month:02 pages:0 https://doi.org/10.1016/j.scitotenv.2020.143836 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 756 2021 20 0220 0 |
allfields_unstemmed |
10.1016/j.scitotenv.2020.143836 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001332.pica (DE-627)ELV052534111 (ELSEVIER)S0048-9697(20)37367-8 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Ji, Yan verfasserin aut Association between urinary organophosphate flame retardant diesters and steroid hormones: A metabolomic study on type 2 diabetes mellitus cases and controls 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters. Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters. Yao, Yiming oth Duan, Yishuang oth Zhao, Hongzhi oth Hong, Yanjun oth Cai, Zongwei oth Sun, Hongwen oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:756 year:2021 day:20 month:02 pages:0 https://doi.org/10.1016/j.scitotenv.2020.143836 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 756 2021 20 0220 0 |
allfieldsGer |
10.1016/j.scitotenv.2020.143836 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001332.pica (DE-627)ELV052534111 (ELSEVIER)S0048-9697(20)37367-8 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Ji, Yan verfasserin aut Association between urinary organophosphate flame retardant diesters and steroid hormones: A metabolomic study on type 2 diabetes mellitus cases and controls 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters. Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters. Yao, Yiming oth Duan, Yishuang oth Zhao, Hongzhi oth Hong, Yanjun oth Cai, Zongwei oth Sun, Hongwen oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:756 year:2021 day:20 month:02 pages:0 https://doi.org/10.1016/j.scitotenv.2020.143836 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 756 2021 20 0220 0 |
allfieldsSound |
10.1016/j.scitotenv.2020.143836 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001332.pica (DE-627)ELV052534111 (ELSEVIER)S0048-9697(20)37367-8 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Ji, Yan verfasserin aut Association between urinary organophosphate flame retardant diesters and steroid hormones: A metabolomic study on type 2 diabetes mellitus cases and controls 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters. Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters. Yao, Yiming oth Duan, Yishuang oth Zhao, Hongzhi oth Hong, Yanjun oth Cai, Zongwei oth Sun, Hongwen oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:756 year:2021 day:20 month:02 pages:0 https://doi.org/10.1016/j.scitotenv.2020.143836 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 756 2021 20 0220 0 |
language |
English |
source |
Enthalten in SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota Amsterdam [u.a.] volume:756 year:2021 day:20 month:02 pages:0 |
sourceStr |
Enthalten in SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota Amsterdam [u.a.] volume:756 year:2021 day:20 month:02 pages:0 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
authorswithroles_txt_mv |
Ji, Yan @@aut@@ Yao, Yiming @@oth@@ Duan, Yishuang @@oth@@ Zhao, Hongzhi @@oth@@ Hong, Yanjun @@oth@@ Cai, Zongwei @@oth@@ Sun, Hongwen @@oth@@ |
publishDateDaySort_date |
2021-01-20T00:00:00Z |
hierarchy_top_id |
ELV001360035 |
dewey-sort |
3630 |
id |
ELV052534111 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052534111</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626033413.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.scitotenv.2020.143836</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001332.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052534111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0048-9697(20)37367-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ji, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Association between urinary organophosphate flame retardant diesters and steroid hormones: A metabolomic study on type 2 diabetes mellitus cases and controls</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Yiming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duan, Yishuang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Hongzhi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hong, Yanjun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Zongwei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Hongwen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Wang, Meimei ELSEVIER</subfield><subfield code="t">SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal for scientific research into the environment and its relationship with man</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001360035</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:756</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:20</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.scitotenv.2020.143836</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">756</subfield><subfield code="j">2021</subfield><subfield code="b">20</subfield><subfield code="c">0220</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Ji, Yan |
spellingShingle |
Ji, Yan ddc 630 Association between urinary organophosphate flame retardant diesters and steroid hormones: A metabolomic study on type 2 diabetes mellitus cases and controls |
authorStr |
Ji, Yan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001360035 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
630 640 610 VZ Association between urinary organophosphate flame retardant diesters and steroid hormones: A metabolomic study on type 2 diabetes mellitus cases and controls |
topic |
ddc 630 |
topic_unstemmed |
ddc 630 |
topic_browse |
ddc 630 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
y y yy y d yd h z hz y h yh z c zc h s hs |
hierarchy_parent_title |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
hierarchy_parent_id |
ELV001360035 |
dewey-tens |
630 - Agriculture 640 - Home & family management 610 - Medicine & health |
hierarchy_top_title |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001360035 |
title |
Association between urinary organophosphate flame retardant diesters and steroid hormones: A metabolomic study on type 2 diabetes mellitus cases and controls |
ctrlnum |
(DE-627)ELV052534111 (ELSEVIER)S0048-9697(20)37367-8 |
title_full |
Association between urinary organophosphate flame retardant diesters and steroid hormones: A metabolomic study on type 2 diabetes mellitus cases and controls |
author_sort |
Ji, Yan |
journal |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
journalStr |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Ji, Yan |
container_volume |
756 |
class |
630 640 610 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Ji, Yan |
doi_str_mv |
10.1016/j.scitotenv.2020.143836 |
dewey-full |
630 640 610 |
title_sort |
association between urinary organophosphate flame retardant diesters and steroid hormones: a metabolomic study on type 2 diabetes mellitus cases and controls |
title_auth |
Association between urinary organophosphate flame retardant diesters and steroid hormones: A metabolomic study on type 2 diabetes mellitus cases and controls |
abstract |
Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters. |
abstractGer |
Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters. |
abstract_unstemmed |
Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Association between urinary organophosphate flame retardant diesters and steroid hormones: A metabolomic study on type 2 diabetes mellitus cases and controls |
url |
https://doi.org/10.1016/j.scitotenv.2020.143836 |
remote_bool |
true |
author2 |
Yao, Yiming Duan, Yishuang Zhao, Hongzhi Hong, Yanjun Cai, Zongwei Sun, Hongwen |
author2Str |
Yao, Yiming Duan, Yishuang Zhao, Hongzhi Hong, Yanjun Cai, Zongwei Sun, Hongwen |
ppnlink |
ELV001360035 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.scitotenv.2020.143836 |
up_date |
2024-07-06T23:17:33.341Z |
_version_ |
1803873527626989568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052534111</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626033413.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.scitotenv.2020.143836</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001332.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052534111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0048-9697(20)37367-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ji, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Association between urinary organophosphate flame retardant diesters and steroid hormones: A metabolomic study on type 2 diabetes mellitus cases and controls</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Metabolomic analysis was conducted by collecting urine samples from 128 participants in diagnose of type 2 diabetes mellitus (T2DM) and 105 volunteers in healthy condition, in order to identify biomarkers of experimental populations. The urinary concentrations of organophosphate flame retardant (OPFR) diesters were determined and linear regression model was used to find associations between OPFR diesters and the identified biomarkers. The urinary concentrations of OPFR diesters ranged from 0.17–779 μg/g creatinine. Diphenyl phosphate (DPHP) was detected with the highest frequency of 97% at a median level of 1.21 μg/g, and bis(1-chloro-2-propyl) phosphate (BCIPP) dominated the highest median level at 4.24 μg/g with a detection frequency of 94.4%. As compared with the control, the urinary median concentrations of bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and DPHP were 2.76, 2.48, and 1.46 times higher in people with T2DM, respectively. Urinary metabolomic data revealed that steroid synthesis was the most significantly altered metabolic pathway between the case and control population. Two biomarkers of cortisol and cortisone that play an important role in steroid hormone regulation were quantified. The linear regression model indicated that per-quartile range increase in the concentrations of each OPFR diester was associated 18%–41% increase in the concentrations of cortisol and cortisone, which may impact energy metabolism linked with T2DM. To our knowledge, this study for the first time reported the altered levels of steroid hormones associated with urinary OPFR diesters.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Yiming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duan, Yishuang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Hongzhi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hong, Yanjun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Zongwei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Hongwen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Wang, Meimei ELSEVIER</subfield><subfield code="t">SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal for scientific research into the environment and its relationship with man</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001360035</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:756</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:20</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.scitotenv.2020.143836</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">756</subfield><subfield code="j">2021</subfield><subfield code="b">20</subfield><subfield code="c">0220</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4017286 |