Redox and pH dual-responsive biodegradable mesoporous silica nanoparticle as a potential drug carrier for synergistic cancer therapy
Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-re...
Ausführliche Beschreibung
Autor*in: |
He, Yongju [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
7 |
---|
Übergeordnetes Werk: |
Enthalten in: Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration - Rey, F. ELSEVIER, 2018, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:47 ; year:2021 ; number:4 ; day:15 ; month:02 ; pages:4572-4578 ; extent:7 |
Links: |
---|
DOI / URN: |
10.1016/j.ceramint.2020.10.022 |
---|
Katalog-ID: |
ELV052670953 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV052670953 | ||
003 | DE-627 | ||
005 | 20230626033604.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ceramint.2020.10.022 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001359.pica |
035 | |a (DE-627)ELV052670953 | ||
035 | |a (ELSEVIER)S0272-8842(20)33063-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |a 610 |q VZ |
084 | |a 43.12 |2 bkl | ||
084 | |a 43.13 |2 bkl | ||
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a He, Yongju |e verfasserin |4 aut | |
245 | 1 | 0 | |a Redox and pH dual-responsive biodegradable mesoporous silica nanoparticle as a potential drug carrier for synergistic cancer therapy |
264 | 1 | |c 2021transfer abstract | |
300 | |a 7 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy. | ||
520 | |a Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy. | ||
650 | 7 | |a Biodegradation |2 Elsevier | |
650 | 7 | |a Redox |2 Elsevier | |
650 | 7 | |a pH |2 Elsevier | |
650 | 7 | |a Mesoporous silica nanoparticle |2 Elsevier | |
650 | 7 | |a Synergistic cancer therapy |2 Elsevier | |
650 | 7 | |a Drug carrier |2 Elsevier | |
700 | 1 | |a Shao, Linjie |4 oth | |
700 | 1 | |a Hu, Yao |4 oth | |
700 | 1 | |a Zhao, Fuwen |4 oth | |
700 | 1 | |a Tan, Songwen |4 oth | |
700 | 1 | |a He, Dan |4 oth | |
700 | 1 | |a Pan, Anqiang |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Rey, F. ELSEVIER |t Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |d 2018 |g Amsterdam [u.a.] |w (DE-627)ELV000899798 |
773 | 1 | 8 | |g volume:47 |g year:2021 |g number:4 |g day:15 |g month:02 |g pages:4572-4578 |g extent:7 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ceramint.2020.10.022 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
936 | b | k | |a 43.13 |j Umwelttoxikologie |q VZ |
936 | b | k | |a 44.13 |j Medizinische Ökologie |q VZ |
951 | |a AR | ||
952 | |d 47 |j 2021 |e 4 |b 15 |c 0215 |h 4572-4578 |g 7 |
author_variant |
y h yh |
---|---|
matchkey_str |
heyongjushaolinjiehuyaozhaofuwentansongw:2021----:eoadhulepnieidgaalmspruslcnnprilaaoetaducr |
hierarchy_sort_str |
2021transfer abstract |
bklnumber |
43.12 43.13 44.13 |
publishDate |
2021 |
allfields |
10.1016/j.ceramint.2020.10.022 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001359.pica (DE-627)ELV052670953 (ELSEVIER)S0272-8842(20)33063-7 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl He, Yongju verfasserin aut Redox and pH dual-responsive biodegradable mesoporous silica nanoparticle as a potential drug carrier for synergistic cancer therapy 2021transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy. Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy. Biodegradation Elsevier Redox Elsevier pH Elsevier Mesoporous silica nanoparticle Elsevier Synergistic cancer therapy Elsevier Drug carrier Elsevier Shao, Linjie oth Hu, Yao oth Zhao, Fuwen oth Tan, Songwen oth He, Dan oth Pan, Anqiang oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:47 year:2021 number:4 day:15 month:02 pages:4572-4578 extent:7 https://doi.org/10.1016/j.ceramint.2020.10.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 47 2021 4 15 0215 4572-4578 7 |
spelling |
10.1016/j.ceramint.2020.10.022 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001359.pica (DE-627)ELV052670953 (ELSEVIER)S0272-8842(20)33063-7 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl He, Yongju verfasserin aut Redox and pH dual-responsive biodegradable mesoporous silica nanoparticle as a potential drug carrier for synergistic cancer therapy 2021transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy. Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy. Biodegradation Elsevier Redox Elsevier pH Elsevier Mesoporous silica nanoparticle Elsevier Synergistic cancer therapy Elsevier Drug carrier Elsevier Shao, Linjie oth Hu, Yao oth Zhao, Fuwen oth Tan, Songwen oth He, Dan oth Pan, Anqiang oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:47 year:2021 number:4 day:15 month:02 pages:4572-4578 extent:7 https://doi.org/10.1016/j.ceramint.2020.10.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 47 2021 4 15 0215 4572-4578 7 |
allfields_unstemmed |
10.1016/j.ceramint.2020.10.022 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001359.pica (DE-627)ELV052670953 (ELSEVIER)S0272-8842(20)33063-7 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl He, Yongju verfasserin aut Redox and pH dual-responsive biodegradable mesoporous silica nanoparticle as a potential drug carrier for synergistic cancer therapy 2021transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy. Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy. Biodegradation Elsevier Redox Elsevier pH Elsevier Mesoporous silica nanoparticle Elsevier Synergistic cancer therapy Elsevier Drug carrier Elsevier Shao, Linjie oth Hu, Yao oth Zhao, Fuwen oth Tan, Songwen oth He, Dan oth Pan, Anqiang oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:47 year:2021 number:4 day:15 month:02 pages:4572-4578 extent:7 https://doi.org/10.1016/j.ceramint.2020.10.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 47 2021 4 15 0215 4572-4578 7 |
allfieldsGer |
10.1016/j.ceramint.2020.10.022 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001359.pica (DE-627)ELV052670953 (ELSEVIER)S0272-8842(20)33063-7 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl He, Yongju verfasserin aut Redox and pH dual-responsive biodegradable mesoporous silica nanoparticle as a potential drug carrier for synergistic cancer therapy 2021transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy. Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy. Biodegradation Elsevier Redox Elsevier pH Elsevier Mesoporous silica nanoparticle Elsevier Synergistic cancer therapy Elsevier Drug carrier Elsevier Shao, Linjie oth Hu, Yao oth Zhao, Fuwen oth Tan, Songwen oth He, Dan oth Pan, Anqiang oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:47 year:2021 number:4 day:15 month:02 pages:4572-4578 extent:7 https://doi.org/10.1016/j.ceramint.2020.10.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 47 2021 4 15 0215 4572-4578 7 |
allfieldsSound |
10.1016/j.ceramint.2020.10.022 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001359.pica (DE-627)ELV052670953 (ELSEVIER)S0272-8842(20)33063-7 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl He, Yongju verfasserin aut Redox and pH dual-responsive biodegradable mesoporous silica nanoparticle as a potential drug carrier for synergistic cancer therapy 2021transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy. Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy. Biodegradation Elsevier Redox Elsevier pH Elsevier Mesoporous silica nanoparticle Elsevier Synergistic cancer therapy Elsevier Drug carrier Elsevier Shao, Linjie oth Hu, Yao oth Zhao, Fuwen oth Tan, Songwen oth He, Dan oth Pan, Anqiang oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:47 year:2021 number:4 day:15 month:02 pages:4572-4578 extent:7 https://doi.org/10.1016/j.ceramint.2020.10.022 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 47 2021 4 15 0215 4572-4578 7 |
language |
English |
source |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:47 year:2021 number:4 day:15 month:02 pages:4572-4578 extent:7 |
sourceStr |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:47 year:2021 number:4 day:15 month:02 pages:4572-4578 extent:7 |
format_phy_str_mv |
Article |
bklname |
Umweltchemie Umwelttoxikologie Medizinische Ökologie |
institution |
findex.gbv.de |
topic_facet |
Biodegradation Redox pH Mesoporous silica nanoparticle Synergistic cancer therapy Drug carrier |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
authorswithroles_txt_mv |
He, Yongju @@aut@@ Shao, Linjie @@oth@@ Hu, Yao @@oth@@ Zhao, Fuwen @@oth@@ Tan, Songwen @@oth@@ He, Dan @@oth@@ Pan, Anqiang @@oth@@ |
publishDateDaySort_date |
2021-01-15T00:00:00Z |
hierarchy_top_id |
ELV000899798 |
dewey-sort |
3333.7 |
id |
ELV052670953 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052670953</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626033604.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2020.10.022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001359.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052670953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(20)33063-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">He, Yongju</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Redox and pH dual-responsive biodegradable mesoporous silica nanoparticle as a potential drug carrier for synergistic cancer therapy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biodegradation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Redox</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">pH</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mesoporous silica nanoparticle</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Synergistic cancer therapy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Drug carrier</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shao, Linjie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Yao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Fuwen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Songwen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Dan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Anqiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">day:15</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:4572-4578</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2020.10.022</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="b">15</subfield><subfield code="c">0215</subfield><subfield code="h">4572-4578</subfield><subfield code="g">7</subfield></datafield></record></collection>
|
author |
He, Yongju |
spellingShingle |
He, Yongju ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Biodegradation Elsevier Redox Elsevier pH Elsevier Mesoporous silica nanoparticle Elsevier Synergistic cancer therapy Elsevier Drug carrier Redox and pH dual-responsive biodegradable mesoporous silica nanoparticle as a potential drug carrier for synergistic cancer therapy |
authorStr |
He, Yongju |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000899798 |
format |
electronic Article |
dewey-ones |
333 - Economics of land & energy 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Redox and pH dual-responsive biodegradable mesoporous silica nanoparticle as a potential drug carrier for synergistic cancer therapy Biodegradation Elsevier Redox Elsevier pH Elsevier Mesoporous silica nanoparticle Elsevier Synergistic cancer therapy Elsevier Drug carrier Elsevier |
topic |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Biodegradation Elsevier Redox Elsevier pH Elsevier Mesoporous silica nanoparticle Elsevier Synergistic cancer therapy Elsevier Drug carrier |
topic_unstemmed |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Biodegradation Elsevier Redox Elsevier pH Elsevier Mesoporous silica nanoparticle Elsevier Synergistic cancer therapy Elsevier Drug carrier |
topic_browse |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Biodegradation Elsevier Redox Elsevier pH Elsevier Mesoporous silica nanoparticle Elsevier Synergistic cancer therapy Elsevier Drug carrier |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
l s ls y h yh f z fz s t st d h dh a p ap |
hierarchy_parent_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
hierarchy_parent_id |
ELV000899798 |
dewey-tens |
330 - Economics 610 - Medicine & health |
hierarchy_top_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000899798 |
title |
Redox and pH dual-responsive biodegradable mesoporous silica nanoparticle as a potential drug carrier for synergistic cancer therapy |
ctrlnum |
(DE-627)ELV052670953 (ELSEVIER)S0272-8842(20)33063-7 |
title_full |
Redox and pH dual-responsive biodegradable mesoporous silica nanoparticle as a potential drug carrier for synergistic cancer therapy |
author_sort |
He, Yongju |
journal |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
journalStr |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
4572 |
author_browse |
He, Yongju |
container_volume |
47 |
physical |
7 |
class |
333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
He, Yongju |
doi_str_mv |
10.1016/j.ceramint.2020.10.022 |
dewey-full |
333.7 610 |
title_sort |
redox and ph dual-responsive biodegradable mesoporous silica nanoparticle as a potential drug carrier for synergistic cancer therapy |
title_auth |
Redox and pH dual-responsive biodegradable mesoporous silica nanoparticle as a potential drug carrier for synergistic cancer therapy |
abstract |
Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy. |
abstractGer |
Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy. |
abstract_unstemmed |
Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO |
container_issue |
4 |
title_short |
Redox and pH dual-responsive biodegradable mesoporous silica nanoparticle as a potential drug carrier for synergistic cancer therapy |
url |
https://doi.org/10.1016/j.ceramint.2020.10.022 |
remote_bool |
true |
author2 |
Shao, Linjie Hu, Yao Zhao, Fuwen Tan, Songwen He, Dan Pan, Anqiang |
author2Str |
Shao, Linjie Hu, Yao Zhao, Fuwen Tan, Songwen He, Dan Pan, Anqiang |
ppnlink |
ELV000899798 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.ceramint.2020.10.022 |
up_date |
2024-07-06T16:48:51.136Z |
_version_ |
1803849072525705216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052670953</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626033604.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2020.10.022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001359.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052670953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(20)33063-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">He, Yongju</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Redox and pH dual-responsive biodegradable mesoporous silica nanoparticle as a potential drug carrier for synergistic cancer therapy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Multifunctional mesoporous silica-based nanocarriers able to efficiently encapsulate drugs for stimuli-responsive release and display rapid biodegradation are highly desirable. In this work, we dope disulfide bonds and calcium into silica framework by one step method to obtain a redox and pH dual-responsive biodegradable mesoporous silica nanoparticle (BT-Ca-MSN) as a potential drug carrier for synergistic cancer therapy. TEM and ICP-OES are used to assess the biodegradation behavior of BT-Ca-MSN. The results show that BT-Ca-MSN can significantly biodegrade in a concurrent reductive and acidic environment due to the simultaneous disulfide bonds cleavage and Ca2+ release. In addition, BT-Ca-MSN shows efficient drug loading capacity and significant biodegradation-mediated drug release. Moreover, the in-vitro cytotoxicity indicates that BT-Ca-MSN can not only exhibit significant cancer cell killing effect without obvious toxicity on healthy cells via the way of released Ca2+-mediated apoptosis, but also can combine with its loaded doxorubicin hydrochloride for synergistic cancer therapy. This work demonstrates that BT-Ca-MSN is a promising platform as drug carrier, providing a paradigm to rationally design biodegradable silica-based carriers for highly efficient cancer therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biodegradation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Redox</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">pH</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mesoporous silica nanoparticle</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Synergistic cancer therapy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Drug carrier</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shao, Linjie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Yao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Fuwen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Songwen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Dan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Anqiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">day:15</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:4572-4578</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2020.10.022</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="b">15</subfield><subfield code="c">0215</subfield><subfield code="h">4572-4578</subfield><subfield code="g">7</subfield></datafield></record></collection>
|
score |
7.399809 |