Evaluation of surface finish technology in the manufacture of Oxide-Oxide ceramic matrix composites
Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and hig...
Ausführliche Beschreibung
Autor*in: |
Tontisakis, A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
17 |
---|
Übergeordnetes Werk: |
Enthalten in: Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration - Rey, F. ELSEVIER, 2018, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:47 ; year:2021 ; number:4 ; day:15 ; month:02 ; pages:5347-5363 ; extent:17 |
Links: |
---|
DOI / URN: |
10.1016/j.ceramint.2020.10.116 |
---|
Katalog-ID: |
ELV052671526 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV052671526 | ||
003 | DE-627 | ||
005 | 20230626033605.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ceramint.2020.10.116 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001359.pica |
035 | |a (DE-627)ELV052671526 | ||
035 | |a (ELSEVIER)S0272-8842(20)33155-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |a 610 |q VZ |
084 | |a 43.12 |2 bkl | ||
084 | |a 43.13 |2 bkl | ||
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a Tontisakis, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluation of surface finish technology in the manufacture of Oxide-Oxide ceramic matrix composites |
264 | 1 | |c 2021transfer abstract | |
300 | |a 17 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film. | ||
520 | |a Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film. | ||
650 | 7 | |a Ceramic matrix composite |2 Elsevier | |
650 | 7 | |a Surfacing film |2 Elsevier | |
650 | 7 | |a Oxide-oxide |2 Elsevier | |
700 | 1 | |a Simpson, W. |4 oth | |
700 | 1 | |a Lincoln, J. |4 oth | |
700 | 1 | |a Dhawan, R. |4 oth | |
700 | 1 | |a Opliger, M. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Rey, F. ELSEVIER |t Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |d 2018 |g Amsterdam [u.a.] |w (DE-627)ELV000899798 |
773 | 1 | 8 | |g volume:47 |g year:2021 |g number:4 |g day:15 |g month:02 |g pages:5347-5363 |g extent:17 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ceramint.2020.10.116 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
936 | b | k | |a 43.13 |j Umwelttoxikologie |q VZ |
936 | b | k | |a 44.13 |j Medizinische Ökologie |q VZ |
951 | |a AR | ||
952 | |d 47 |j 2021 |e 4 |b 15 |c 0215 |h 5347-5363 |g 17 |
author_variant |
a t at |
---|---|
matchkey_str |
tontisakisasimpsonwlincolnjdhawanroplige:2021----:vlainfufcfnstcnlgiteauatrooiexd |
hierarchy_sort_str |
2021transfer abstract |
bklnumber |
43.12 43.13 44.13 |
publishDate |
2021 |
allfields |
10.1016/j.ceramint.2020.10.116 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001359.pica (DE-627)ELV052671526 (ELSEVIER)S0272-8842(20)33155-2 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Tontisakis, A. verfasserin aut Evaluation of surface finish technology in the manufacture of Oxide-Oxide ceramic matrix composites 2021transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film. Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film. Ceramic matrix composite Elsevier Surfacing film Elsevier Oxide-oxide Elsevier Simpson, W. oth Lincoln, J. oth Dhawan, R. oth Opliger, M. oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:47 year:2021 number:4 day:15 month:02 pages:5347-5363 extent:17 https://doi.org/10.1016/j.ceramint.2020.10.116 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 47 2021 4 15 0215 5347-5363 17 |
spelling |
10.1016/j.ceramint.2020.10.116 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001359.pica (DE-627)ELV052671526 (ELSEVIER)S0272-8842(20)33155-2 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Tontisakis, A. verfasserin aut Evaluation of surface finish technology in the manufacture of Oxide-Oxide ceramic matrix composites 2021transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film. Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film. Ceramic matrix composite Elsevier Surfacing film Elsevier Oxide-oxide Elsevier Simpson, W. oth Lincoln, J. oth Dhawan, R. oth Opliger, M. oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:47 year:2021 number:4 day:15 month:02 pages:5347-5363 extent:17 https://doi.org/10.1016/j.ceramint.2020.10.116 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 47 2021 4 15 0215 5347-5363 17 |
allfields_unstemmed |
10.1016/j.ceramint.2020.10.116 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001359.pica (DE-627)ELV052671526 (ELSEVIER)S0272-8842(20)33155-2 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Tontisakis, A. verfasserin aut Evaluation of surface finish technology in the manufacture of Oxide-Oxide ceramic matrix composites 2021transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film. Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film. Ceramic matrix composite Elsevier Surfacing film Elsevier Oxide-oxide Elsevier Simpson, W. oth Lincoln, J. oth Dhawan, R. oth Opliger, M. oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:47 year:2021 number:4 day:15 month:02 pages:5347-5363 extent:17 https://doi.org/10.1016/j.ceramint.2020.10.116 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 47 2021 4 15 0215 5347-5363 17 |
allfieldsGer |
10.1016/j.ceramint.2020.10.116 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001359.pica (DE-627)ELV052671526 (ELSEVIER)S0272-8842(20)33155-2 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Tontisakis, A. verfasserin aut Evaluation of surface finish technology in the manufacture of Oxide-Oxide ceramic matrix composites 2021transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film. Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film. Ceramic matrix composite Elsevier Surfacing film Elsevier Oxide-oxide Elsevier Simpson, W. oth Lincoln, J. oth Dhawan, R. oth Opliger, M. oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:47 year:2021 number:4 day:15 month:02 pages:5347-5363 extent:17 https://doi.org/10.1016/j.ceramint.2020.10.116 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 47 2021 4 15 0215 5347-5363 17 |
allfieldsSound |
10.1016/j.ceramint.2020.10.116 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001359.pica (DE-627)ELV052671526 (ELSEVIER)S0272-8842(20)33155-2 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Tontisakis, A. verfasserin aut Evaluation of surface finish technology in the manufacture of Oxide-Oxide ceramic matrix composites 2021transfer abstract 17 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film. Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film. Ceramic matrix composite Elsevier Surfacing film Elsevier Oxide-oxide Elsevier Simpson, W. oth Lincoln, J. oth Dhawan, R. oth Opliger, M. oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:47 year:2021 number:4 day:15 month:02 pages:5347-5363 extent:17 https://doi.org/10.1016/j.ceramint.2020.10.116 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 47 2021 4 15 0215 5347-5363 17 |
language |
English |
source |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:47 year:2021 number:4 day:15 month:02 pages:5347-5363 extent:17 |
sourceStr |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:47 year:2021 number:4 day:15 month:02 pages:5347-5363 extent:17 |
format_phy_str_mv |
Article |
bklname |
Umweltchemie Umwelttoxikologie Medizinische Ökologie |
institution |
findex.gbv.de |
topic_facet |
Ceramic matrix composite Surfacing film Oxide-oxide |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
authorswithroles_txt_mv |
Tontisakis, A. @@aut@@ Simpson, W. @@oth@@ Lincoln, J. @@oth@@ Dhawan, R. @@oth@@ Opliger, M. @@oth@@ |
publishDateDaySort_date |
2021-01-15T00:00:00Z |
hierarchy_top_id |
ELV000899798 |
dewey-sort |
3333.7 |
id |
ELV052671526 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052671526</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626033605.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2020.10.116</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001359.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052671526</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(20)33155-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tontisakis, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of surface finish technology in the manufacture of Oxide-Oxide ceramic matrix composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ceramic matrix composite</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Surfacing film</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oxide-oxide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simpson, W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lincoln, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhawan, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Opliger, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">day:15</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:5347-5363</subfield><subfield code="g">extent:17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2020.10.116</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="b">15</subfield><subfield code="c">0215</subfield><subfield code="h">5347-5363</subfield><subfield code="g">17</subfield></datafield></record></collection>
|
author |
Tontisakis, A. |
spellingShingle |
Tontisakis, A. ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Ceramic matrix composite Elsevier Surfacing film Elsevier Oxide-oxide Evaluation of surface finish technology in the manufacture of Oxide-Oxide ceramic matrix composites |
authorStr |
Tontisakis, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000899798 |
format |
electronic Article |
dewey-ones |
333 - Economics of land & energy 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Evaluation of surface finish technology in the manufacture of Oxide-Oxide ceramic matrix composites Ceramic matrix composite Elsevier Surfacing film Elsevier Oxide-oxide Elsevier |
topic |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Ceramic matrix composite Elsevier Surfacing film Elsevier Oxide-oxide |
topic_unstemmed |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Ceramic matrix composite Elsevier Surfacing film Elsevier Oxide-oxide |
topic_browse |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Ceramic matrix composite Elsevier Surfacing film Elsevier Oxide-oxide |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
w s ws j l jl r d rd m o mo |
hierarchy_parent_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
hierarchy_parent_id |
ELV000899798 |
dewey-tens |
330 - Economics 610 - Medicine & health |
hierarchy_top_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000899798 |
title |
Evaluation of surface finish technology in the manufacture of Oxide-Oxide ceramic matrix composites |
ctrlnum |
(DE-627)ELV052671526 (ELSEVIER)S0272-8842(20)33155-2 |
title_full |
Evaluation of surface finish technology in the manufacture of Oxide-Oxide ceramic matrix composites |
author_sort |
Tontisakis, A. |
journal |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
journalStr |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
5347 |
author_browse |
Tontisakis, A. |
container_volume |
47 |
physical |
17 |
class |
333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tontisakis, A. |
doi_str_mv |
10.1016/j.ceramint.2020.10.116 |
dewey-full |
333.7 610 |
title_sort |
evaluation of surface finish technology in the manufacture of oxide-oxide ceramic matrix composites |
title_auth |
Evaluation of surface finish technology in the manufacture of Oxide-Oxide ceramic matrix composites |
abstract |
Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film. |
abstractGer |
Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film. |
abstract_unstemmed |
Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO |
container_issue |
4 |
title_short |
Evaluation of surface finish technology in the manufacture of Oxide-Oxide ceramic matrix composites |
url |
https://doi.org/10.1016/j.ceramint.2020.10.116 |
remote_bool |
true |
author2 |
Simpson, W. Lincoln, J. Dhawan, R. Opliger, M. |
author2Str |
Simpson, W. Lincoln, J. Dhawan, R. Opliger, M. |
ppnlink |
ELV000899798 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.ceramint.2020.10.116 |
up_date |
2024-07-06T16:48:58.425Z |
_version_ |
1803849080165629952 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052671526</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626033605.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2020.10.116</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001359.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052671526</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(20)33155-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tontisakis, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of surface finish technology in the manufacture of Oxide-Oxide ceramic matrix composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">17</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Oxide-Oxide ceramic matrix composites (Ox-Ox CMCs) enable improved performance properties relative to titanium, inconel and other high-temperature alloys, as high-temperature components in the aerospace and advanced energy sectors due to their low density, oxidation and corrosion resistance, and high heat resistance. However, the high surface porosity and roughness of Ox-Ox CMCs can be problematic in some applications, especially where airflow, drag and friction play a factor in overall performance. The present study explores the application of an Ox-Ox CMC surfacing film designed to co-cure and sinter with composite parts manufactured using Ox-Ox pre-impregnated fabrics with the intention of providing improved surface finish. This surfacing film aims to reduce surface roughness, improve smoothness and airflow, reduce surface porosity and improve resistance to thermal cycling by minimizing microcracking. The film is based on Ox-Ox chemistry compatible with current systems in the market and can withstand temperatures up to 1400 °C. Surface properties and mechanical properties are evaluated and reported on Ox-Ox CMC laminates prepared with and without surfacing film. Results indicate that the Ox-Ox CMC surfacing film provides meaningful improvement in surface quality and in damage tolerance. Marginal reduction in fiber volume percentage was observed due to the increased matrix contribution from the surfacing film.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ceramic matrix composite</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Surfacing film</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oxide-oxide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simpson, W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lincoln, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhawan, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Opliger, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">day:15</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:5347-5363</subfield><subfield code="g">extent:17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2020.10.116</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="b">15</subfield><subfield code="c">0215</subfield><subfield code="h">5347-5363</subfield><subfield code="g">17</subfield></datafield></record></collection>
|
score |
7.402501 |