Matrix eigenvalue spectrum assignment for linear control systems by static output feedback
For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like ran...
Ausführliche Beschreibung
Autor*in: |
Zaitsev, Vasilii [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
36 |
---|
Übergeordnetes Werk: |
Enthalten in: CFD investigation on particle deposition in aligned and staggered ribbed duct air flows - Lu, Hao ELSEVIER, 2016, LAA, New York, NY |
---|---|
Übergeordnetes Werk: |
volume:613 ; year:2021 ; day:15 ; month:03 ; pages:115-150 ; extent:36 |
Links: |
---|
DOI / URN: |
10.1016/j.laa.2020.12.017 |
---|
Katalog-ID: |
ELV05273305X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV05273305X | ||
003 | DE-627 | ||
005 | 20230626033701.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.laa.2020.12.017 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001266.pica |
035 | |a (DE-627)ELV05273305X | ||
035 | |a (ELSEVIER)S0024-3795(20)30583-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Zaitsev, Vasilii |e verfasserin |4 aut | |
245 | 1 | 0 | |a Matrix eigenvalue spectrum assignment for linear control systems by static output feedback |
264 | 1 | |c 2021transfer abstract | |
300 | |a 36 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results. | ||
520 | |a For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results. | ||
650 | 7 | |a 93B25 |2 Elsevier | |
650 | 7 | |a 93B55 |2 Elsevier | |
650 | 7 | |a 93C05 |2 Elsevier | |
650 | 7 | |a 93B52 |2 Elsevier | |
700 | 1 | |a Kim, Inna |4 oth | |
773 | 0 | 8 | |i Enthalten in |n American Elsevier Publ |a Lu, Hao ELSEVIER |t CFD investigation on particle deposition in aligned and staggered ribbed duct air flows |d 2016 |d LAA |g New York, NY |w (DE-627)ELV014483130 |
773 | 1 | 8 | |g volume:613 |g year:2021 |g day:15 |g month:03 |g pages:115-150 |g extent:36 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.laa.2020.12.017 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2021 | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 613 |j 2021 |b 15 |c 0315 |h 115-150 |g 36 |
author_variant |
v z vz |
---|---|
matchkey_str |
zaitsevvasiliikiminna:2021----:arxievlepcrmsinetolnacnrlytm |
hierarchy_sort_str |
2021transfer abstract |
bklnumber |
52.56 |
publishDate |
2021 |
allfields |
10.1016/j.laa.2020.12.017 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001266.pica (DE-627)ELV05273305X (ELSEVIER)S0024-3795(20)30583-8 DE-627 ger DE-627 rakwb eng 690 VZ 530 620 VZ 52.56 bkl Zaitsev, Vasilii verfasserin aut Matrix eigenvalue spectrum assignment for linear control systems by static output feedback 2021transfer abstract 36 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results. For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results. 93B25 Elsevier 93B55 Elsevier 93C05 Elsevier 93B52 Elsevier Kim, Inna oth Enthalten in American Elsevier Publ Lu, Hao ELSEVIER CFD investigation on particle deposition in aligned and staggered ribbed duct air flows 2016 LAA New York, NY (DE-627)ELV014483130 volume:613 year:2021 day:15 month:03 pages:115-150 extent:36 https://doi.org/10.1016/j.laa.2020.12.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 GBV_ILN_2015 GBV_ILN_2021 52.56 Regenerative Energieformen alternative Energieformen VZ AR 613 2021 15 0315 115-150 36 |
spelling |
10.1016/j.laa.2020.12.017 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001266.pica (DE-627)ELV05273305X (ELSEVIER)S0024-3795(20)30583-8 DE-627 ger DE-627 rakwb eng 690 VZ 530 620 VZ 52.56 bkl Zaitsev, Vasilii verfasserin aut Matrix eigenvalue spectrum assignment for linear control systems by static output feedback 2021transfer abstract 36 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results. For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results. 93B25 Elsevier 93B55 Elsevier 93C05 Elsevier 93B52 Elsevier Kim, Inna oth Enthalten in American Elsevier Publ Lu, Hao ELSEVIER CFD investigation on particle deposition in aligned and staggered ribbed duct air flows 2016 LAA New York, NY (DE-627)ELV014483130 volume:613 year:2021 day:15 month:03 pages:115-150 extent:36 https://doi.org/10.1016/j.laa.2020.12.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 GBV_ILN_2015 GBV_ILN_2021 52.56 Regenerative Energieformen alternative Energieformen VZ AR 613 2021 15 0315 115-150 36 |
allfields_unstemmed |
10.1016/j.laa.2020.12.017 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001266.pica (DE-627)ELV05273305X (ELSEVIER)S0024-3795(20)30583-8 DE-627 ger DE-627 rakwb eng 690 VZ 530 620 VZ 52.56 bkl Zaitsev, Vasilii verfasserin aut Matrix eigenvalue spectrum assignment for linear control systems by static output feedback 2021transfer abstract 36 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results. For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results. 93B25 Elsevier 93B55 Elsevier 93C05 Elsevier 93B52 Elsevier Kim, Inna oth Enthalten in American Elsevier Publ Lu, Hao ELSEVIER CFD investigation on particle deposition in aligned and staggered ribbed duct air flows 2016 LAA New York, NY (DE-627)ELV014483130 volume:613 year:2021 day:15 month:03 pages:115-150 extent:36 https://doi.org/10.1016/j.laa.2020.12.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 GBV_ILN_2015 GBV_ILN_2021 52.56 Regenerative Energieformen alternative Energieformen VZ AR 613 2021 15 0315 115-150 36 |
allfieldsGer |
10.1016/j.laa.2020.12.017 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001266.pica (DE-627)ELV05273305X (ELSEVIER)S0024-3795(20)30583-8 DE-627 ger DE-627 rakwb eng 690 VZ 530 620 VZ 52.56 bkl Zaitsev, Vasilii verfasserin aut Matrix eigenvalue spectrum assignment for linear control systems by static output feedback 2021transfer abstract 36 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results. For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results. 93B25 Elsevier 93B55 Elsevier 93C05 Elsevier 93B52 Elsevier Kim, Inna oth Enthalten in American Elsevier Publ Lu, Hao ELSEVIER CFD investigation on particle deposition in aligned and staggered ribbed duct air flows 2016 LAA New York, NY (DE-627)ELV014483130 volume:613 year:2021 day:15 month:03 pages:115-150 extent:36 https://doi.org/10.1016/j.laa.2020.12.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 GBV_ILN_2015 GBV_ILN_2021 52.56 Regenerative Energieformen alternative Energieformen VZ AR 613 2021 15 0315 115-150 36 |
allfieldsSound |
10.1016/j.laa.2020.12.017 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001266.pica (DE-627)ELV05273305X (ELSEVIER)S0024-3795(20)30583-8 DE-627 ger DE-627 rakwb eng 690 VZ 530 620 VZ 52.56 bkl Zaitsev, Vasilii verfasserin aut Matrix eigenvalue spectrum assignment for linear control systems by static output feedback 2021transfer abstract 36 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results. For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results. 93B25 Elsevier 93B55 Elsevier 93C05 Elsevier 93B52 Elsevier Kim, Inna oth Enthalten in American Elsevier Publ Lu, Hao ELSEVIER CFD investigation on particle deposition in aligned and staggered ribbed duct air flows 2016 LAA New York, NY (DE-627)ELV014483130 volume:613 year:2021 day:15 month:03 pages:115-150 extent:36 https://doi.org/10.1016/j.laa.2020.12.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 GBV_ILN_2015 GBV_ILN_2021 52.56 Regenerative Energieformen alternative Energieformen VZ AR 613 2021 15 0315 115-150 36 |
language |
English |
source |
Enthalten in CFD investigation on particle deposition in aligned and staggered ribbed duct air flows New York, NY volume:613 year:2021 day:15 month:03 pages:115-150 extent:36 |
sourceStr |
Enthalten in CFD investigation on particle deposition in aligned and staggered ribbed duct air flows New York, NY volume:613 year:2021 day:15 month:03 pages:115-150 extent:36 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
93B25 93B55 93C05 93B52 |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
CFD investigation on particle deposition in aligned and staggered ribbed duct air flows |
authorswithroles_txt_mv |
Zaitsev, Vasilii @@aut@@ Kim, Inna @@oth@@ |
publishDateDaySort_date |
2021-01-15T00:00:00Z |
hierarchy_top_id |
ELV014483130 |
dewey-sort |
3690 |
id |
ELV05273305X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05273305X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626033701.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.laa.2020.12.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001266.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05273305X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0024-3795(20)30583-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zaitsev, Vasilii</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrix eigenvalue spectrum assignment for linear control systems by static output feedback</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">36</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">93B25</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">93B55</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">93C05</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">93B52</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Inna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">American Elsevier Publ</subfield><subfield code="a">Lu, Hao ELSEVIER</subfield><subfield code="t">CFD investigation on particle deposition in aligned and staggered ribbed duct air flows</subfield><subfield code="d">2016</subfield><subfield code="d">LAA</subfield><subfield code="g">New York, NY</subfield><subfield code="w">(DE-627)ELV014483130</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:613</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:115-150</subfield><subfield code="g">extent:36</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.laa.2020.12.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">613</subfield><subfield code="j">2021</subfield><subfield code="b">15</subfield><subfield code="c">0315</subfield><subfield code="h">115-150</subfield><subfield code="g">36</subfield></datafield></record></collection>
|
author |
Zaitsev, Vasilii |
spellingShingle |
Zaitsev, Vasilii ddc 690 ddc 530 bkl 52.56 Elsevier 93B25 Elsevier 93B55 Elsevier 93C05 Elsevier 93B52 Matrix eigenvalue spectrum assignment for linear control systems by static output feedback |
authorStr |
Zaitsev, Vasilii |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV014483130 |
format |
electronic Article |
dewey-ones |
690 - Buildings 530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 VZ 530 620 VZ 52.56 bkl Matrix eigenvalue spectrum assignment for linear control systems by static output feedback 93B25 Elsevier 93B55 Elsevier 93C05 Elsevier 93B52 Elsevier |
topic |
ddc 690 ddc 530 bkl 52.56 Elsevier 93B25 Elsevier 93B55 Elsevier 93C05 Elsevier 93B52 |
topic_unstemmed |
ddc 690 ddc 530 bkl 52.56 Elsevier 93B25 Elsevier 93B55 Elsevier 93C05 Elsevier 93B52 |
topic_browse |
ddc 690 ddc 530 bkl 52.56 Elsevier 93B25 Elsevier 93B55 Elsevier 93C05 Elsevier 93B52 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
i k ik |
hierarchy_parent_title |
CFD investigation on particle deposition in aligned and staggered ribbed duct air flows |
hierarchy_parent_id |
ELV014483130 |
dewey-tens |
690 - Building & construction 530 - Physics 620 - Engineering |
hierarchy_top_title |
CFD investigation on particle deposition in aligned and staggered ribbed duct air flows |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV014483130 |
title |
Matrix eigenvalue spectrum assignment for linear control systems by static output feedback |
ctrlnum |
(DE-627)ELV05273305X (ELSEVIER)S0024-3795(20)30583-8 |
title_full |
Matrix eigenvalue spectrum assignment for linear control systems by static output feedback |
author_sort |
Zaitsev, Vasilii |
journal |
CFD investigation on particle deposition in aligned and staggered ribbed duct air flows |
journalStr |
CFD investigation on particle deposition in aligned and staggered ribbed duct air flows |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
115 |
author_browse |
Zaitsev, Vasilii |
container_volume |
613 |
physical |
36 |
class |
690 VZ 530 620 VZ 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zaitsev, Vasilii |
doi_str_mv |
10.1016/j.laa.2020.12.017 |
dewey-full |
690 530 620 |
title_sort |
matrix eigenvalue spectrum assignment for linear control systems by static output feedback |
title_auth |
Matrix eigenvalue spectrum assignment for linear control systems by static output feedback |
abstract |
For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results. |
abstractGer |
For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results. |
abstract_unstemmed |
For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 GBV_ILN_2015 GBV_ILN_2021 |
title_short |
Matrix eigenvalue spectrum assignment for linear control systems by static output feedback |
url |
https://doi.org/10.1016/j.laa.2020.12.017 |
remote_bool |
true |
author2 |
Kim, Inna |
author2Str |
Kim, Inna |
ppnlink |
ELV014483130 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.laa.2020.12.017 |
up_date |
2024-07-06T16:59:39.956Z |
_version_ |
1803849752860688384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05273305X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626033701.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.laa.2020.12.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001266.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05273305X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0024-3795(20)30583-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zaitsev, Vasilii</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrix eigenvalue spectrum assignment for linear control systems by static output feedback</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">36</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For a linear time-invariant control system defined by a linear differential equation of the n-th order with a multidimensional state, input and output, we set and study the problem of arbitrary matrix eigenvalue spectrum assignment by linear static output feedback. We obtain controllability-like rank conditions that are necessary and sufficient for the problem of arbitrary matrix eigenvalue spectrum assignment and are sufficient for the problem of arbitrary eigenvalue spectrum assignment by linear static output feedback. It is proved that, in particular cases, when the system has block scalar matrix coefficients, these conditions can be relaxed. The obtained results generalize the known results for the corresponding problem by static state feedback and by static output feedback in the case of the one-dimensional equation. Examples are presented to illustrate the results.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">93B25</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">93B55</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">93C05</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">93B52</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Inna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">American Elsevier Publ</subfield><subfield code="a">Lu, Hao ELSEVIER</subfield><subfield code="t">CFD investigation on particle deposition in aligned and staggered ribbed duct air flows</subfield><subfield code="d">2016</subfield><subfield code="d">LAA</subfield><subfield code="g">New York, NY</subfield><subfield code="w">(DE-627)ELV014483130</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:613</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:115-150</subfield><subfield code="g">extent:36</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.laa.2020.12.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">613</subfield><subfield code="j">2021</subfield><subfield code="b">15</subfield><subfield code="c">0315</subfield><subfield code="h">115-150</subfield><subfield code="g">36</subfield></datafield></record></collection>
|
score |
7.4018736 |