Macrozoobenthic community responses to sedimentary contaminations by anthropogenic toxic substances in the Geum River Estuary, South Korea
We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of Febru...
Ausführliche Beschreibung
Autor*in: |
Yoon, Seo Joon [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Übergeordnetes Werk: |
Enthalten in: SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota - Wang, Meimei ELSEVIER, 2018, an international journal for scientific research into the environment and its relationship with man, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:763 ; year:2021 ; day:1 ; month:04 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.scitotenv.2020.142938 |
---|
Katalog-ID: |
ELV052772497 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV052772497 | ||
003 | DE-627 | ||
005 | 20230626033734.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.scitotenv.2020.142938 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001526.pica |
035 | |a (DE-627)ELV052772497 | ||
035 | |a (ELSEVIER)S0048-9697(20)36468-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |a 610 |q VZ |
100 | 1 | |a Yoon, Seo Joon |e verfasserin |4 aut | |
245 | 1 | 0 | |a Macrozoobenthic community responses to sedimentary contaminations by anthropogenic toxic substances in the Geum River Estuary, South Korea |
264 | 1 | |c 2021transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater. | ||
520 | |a We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater. | ||
700 | 1 | |a Hong, Seongjin |4 oth | |
700 | 1 | |a Kim, Hyeong-Gi |4 oth | |
700 | 1 | |a Lee, Junghyun |4 oth | |
700 | 1 | |a Kim, Taewoo |4 oth | |
700 | 1 | |a Kwon, Bong-Oh |4 oth | |
700 | 1 | |a Kim, Jaeseong |4 oth | |
700 | 1 | |a Ryu, Jongseong |4 oth | |
700 | 1 | |a Khim, Jong Seong |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Wang, Meimei ELSEVIER |t SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |d 2018 |d an international journal for scientific research into the environment and its relationship with man |g Amsterdam [u.a.] |w (DE-627)ELV001360035 |
773 | 1 | 8 | |g volume:763 |g year:2021 |g day:1 |g month:04 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.scitotenv.2020.142938 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 763 |j 2021 |b 1 |c 0401 |h 0 |
author_variant |
s j y sj sjy |
---|---|
matchkey_str |
yoonseojoonhongseongjinkimhyeonggileejun:2021----:arzoeticmuiyepnetsdmnayotmntosynhooeitxcusacs |
hierarchy_sort_str |
2021transfer abstract |
publishDate |
2021 |
allfields |
10.1016/j.scitotenv.2020.142938 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001526.pica (DE-627)ELV052772497 (ELSEVIER)S0048-9697(20)36468-8 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Yoon, Seo Joon verfasserin aut Macrozoobenthic community responses to sedimentary contaminations by anthropogenic toxic substances in the Geum River Estuary, South Korea 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater. We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater. Hong, Seongjin oth Kim, Hyeong-Gi oth Lee, Junghyun oth Kim, Taewoo oth Kwon, Bong-Oh oth Kim, Jaeseong oth Ryu, Jongseong oth Khim, Jong Seong oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:763 year:2021 day:1 month:04 pages:0 https://doi.org/10.1016/j.scitotenv.2020.142938 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 763 2021 1 0401 0 |
spelling |
10.1016/j.scitotenv.2020.142938 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001526.pica (DE-627)ELV052772497 (ELSEVIER)S0048-9697(20)36468-8 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Yoon, Seo Joon verfasserin aut Macrozoobenthic community responses to sedimentary contaminations by anthropogenic toxic substances in the Geum River Estuary, South Korea 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater. We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater. Hong, Seongjin oth Kim, Hyeong-Gi oth Lee, Junghyun oth Kim, Taewoo oth Kwon, Bong-Oh oth Kim, Jaeseong oth Ryu, Jongseong oth Khim, Jong Seong oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:763 year:2021 day:1 month:04 pages:0 https://doi.org/10.1016/j.scitotenv.2020.142938 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 763 2021 1 0401 0 |
allfields_unstemmed |
10.1016/j.scitotenv.2020.142938 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001526.pica (DE-627)ELV052772497 (ELSEVIER)S0048-9697(20)36468-8 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Yoon, Seo Joon verfasserin aut Macrozoobenthic community responses to sedimentary contaminations by anthropogenic toxic substances in the Geum River Estuary, South Korea 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater. We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater. Hong, Seongjin oth Kim, Hyeong-Gi oth Lee, Junghyun oth Kim, Taewoo oth Kwon, Bong-Oh oth Kim, Jaeseong oth Ryu, Jongseong oth Khim, Jong Seong oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:763 year:2021 day:1 month:04 pages:0 https://doi.org/10.1016/j.scitotenv.2020.142938 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 763 2021 1 0401 0 |
allfieldsGer |
10.1016/j.scitotenv.2020.142938 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001526.pica (DE-627)ELV052772497 (ELSEVIER)S0048-9697(20)36468-8 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Yoon, Seo Joon verfasserin aut Macrozoobenthic community responses to sedimentary contaminations by anthropogenic toxic substances in the Geum River Estuary, South Korea 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater. We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater. Hong, Seongjin oth Kim, Hyeong-Gi oth Lee, Junghyun oth Kim, Taewoo oth Kwon, Bong-Oh oth Kim, Jaeseong oth Ryu, Jongseong oth Khim, Jong Seong oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:763 year:2021 day:1 month:04 pages:0 https://doi.org/10.1016/j.scitotenv.2020.142938 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 763 2021 1 0401 0 |
allfieldsSound |
10.1016/j.scitotenv.2020.142938 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001526.pica (DE-627)ELV052772497 (ELSEVIER)S0048-9697(20)36468-8 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Yoon, Seo Joon verfasserin aut Macrozoobenthic community responses to sedimentary contaminations by anthropogenic toxic substances in the Geum River Estuary, South Korea 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater. We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater. Hong, Seongjin oth Kim, Hyeong-Gi oth Lee, Junghyun oth Kim, Taewoo oth Kwon, Bong-Oh oth Kim, Jaeseong oth Ryu, Jongseong oth Khim, Jong Seong oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:763 year:2021 day:1 month:04 pages:0 https://doi.org/10.1016/j.scitotenv.2020.142938 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 763 2021 1 0401 0 |
language |
English |
source |
Enthalten in SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota Amsterdam [u.a.] volume:763 year:2021 day:1 month:04 pages:0 |
sourceStr |
Enthalten in SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota Amsterdam [u.a.] volume:763 year:2021 day:1 month:04 pages:0 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
authorswithroles_txt_mv |
Yoon, Seo Joon @@aut@@ Hong, Seongjin @@oth@@ Kim, Hyeong-Gi @@oth@@ Lee, Junghyun @@oth@@ Kim, Taewoo @@oth@@ Kwon, Bong-Oh @@oth@@ Kim, Jaeseong @@oth@@ Ryu, Jongseong @@oth@@ Khim, Jong Seong @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV001360035 |
dewey-sort |
3630 |
id |
ELV052772497 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052772497</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626033734.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.scitotenv.2020.142938</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001526.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052772497</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0048-9697(20)36468-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yoon, Seo Joon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Macrozoobenthic community responses to sedimentary contaminations by anthropogenic toxic substances in the Geum River Estuary, South Korea</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hong, Seongjin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Hyeong-Gi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Junghyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Taewoo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kwon, Bong-Oh</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Jaeseong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ryu, Jongseong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khim, Jong Seong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Wang, Meimei ELSEVIER</subfield><subfield code="t">SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal for scientific research into the environment and its relationship with man</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001360035</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:763</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:1</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.scitotenv.2020.142938</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">763</subfield><subfield code="j">2021</subfield><subfield code="b">1</subfield><subfield code="c">0401</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Yoon, Seo Joon |
spellingShingle |
Yoon, Seo Joon ddc 630 Macrozoobenthic community responses to sedimentary contaminations by anthropogenic toxic substances in the Geum River Estuary, South Korea |
authorStr |
Yoon, Seo Joon |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001360035 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
630 640 610 VZ Macrozoobenthic community responses to sedimentary contaminations by anthropogenic toxic substances in the Geum River Estuary, South Korea |
topic |
ddc 630 |
topic_unstemmed |
ddc 630 |
topic_browse |
ddc 630 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s h sh h g k hgk j l jl t k tk b o k bok j k jk j r jr j s k js jsk |
hierarchy_parent_title |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
hierarchy_parent_id |
ELV001360035 |
dewey-tens |
630 - Agriculture 640 - Home & family management 610 - Medicine & health |
hierarchy_top_title |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001360035 |
title |
Macrozoobenthic community responses to sedimentary contaminations by anthropogenic toxic substances in the Geum River Estuary, South Korea |
ctrlnum |
(DE-627)ELV052772497 (ELSEVIER)S0048-9697(20)36468-8 |
title_full |
Macrozoobenthic community responses to sedimentary contaminations by anthropogenic toxic substances in the Geum River Estuary, South Korea |
author_sort |
Yoon, Seo Joon |
journal |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
journalStr |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Yoon, Seo Joon |
container_volume |
763 |
class |
630 640 610 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Yoon, Seo Joon |
doi_str_mv |
10.1016/j.scitotenv.2020.142938 |
dewey-full |
630 640 610 |
title_sort |
macrozoobenthic community responses to sedimentary contaminations by anthropogenic toxic substances in the geum river estuary, south korea |
title_auth |
Macrozoobenthic community responses to sedimentary contaminations by anthropogenic toxic substances in the Geum River Estuary, South Korea |
abstract |
We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater. |
abstractGer |
We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater. |
abstract_unstemmed |
We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Macrozoobenthic community responses to sedimentary contaminations by anthropogenic toxic substances in the Geum River Estuary, South Korea |
url |
https://doi.org/10.1016/j.scitotenv.2020.142938 |
remote_bool |
true |
author2 |
Hong, Seongjin Kim, Hyeong-Gi Lee, Junghyun Kim, Taewoo Kwon, Bong-Oh Kim, Jaeseong Ryu, Jongseong Khim, Jong Seong |
author2Str |
Hong, Seongjin Kim, Hyeong-Gi Lee, Junghyun Kim, Taewoo Kwon, Bong-Oh Kim, Jaeseong Ryu, Jongseong Khim, Jong Seong |
ppnlink |
ELV001360035 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.scitotenv.2020.142938 |
up_date |
2024-07-06T17:06:29.320Z |
_version_ |
1803850182107856896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052772497</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626033734.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.scitotenv.2020.142938</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001526.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052772497</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0048-9697(20)36468-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yoon, Seo Joon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Macrozoobenthic community responses to sedimentary contaminations by anthropogenic toxic substances in the Geum River Estuary, South Korea</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We investigated the sedimentary pollution by persistent toxic substances (PTSs) and their potential impacts on the macrobenthic faunal community in the Geum River Estuary, South Korea. Sediment and benthic macrofauna samples were collected from eight sites every two months during the period of February to December in 2015. Target PTSs encompassed metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn), one metalloid (As), polycyclic aromatic hydrocarbons (PAHs), and alkylphenols (APs). The significant difference to the environment of the inner and outer parts of the estuary (p < 0.05) was found with relatively high concentrations of PTSs in sediment from the inner estuary. The concentrations of Cu and Zn exceeded the sediment quality guidelines of Korea representing a potential risk to aquatic organisms. The primary source of PAHs was by-products of diesel and gasoline combustion (37%), followed by a coke oven (32%) and oil-burning (31%). The macrofaunal community was spatially distinguished between the inner and outer parts of the estuary (p < 0.05), regardless of the season. In the inner part of the estuary, the density of the macrofaunal community was high, due to the increased opportunistic species and/or some indicator species (organic polluted or enrichment), implying that the given environment was disturbed. Among the environmental parameters analyzed by the distance-based linear model (DistLM), salinity, chlorophyll-a, and nutrient concentrations were found to be key factors controlling the changes in macrofaunal community structure. Such changes in the closed estuary system would indicate that each taxonomic group had to adjust to lower salinities and alternative food sources. Overall, the distribution of PTSs and macrozoobenthic communities in the Geum River Estuary collectively reflected the environmental gradients caused by surrounding activities in the inner part of the estuary together with direct effects by the irregular inflow of freshwater.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hong, Seongjin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Hyeong-Gi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Junghyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Taewoo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kwon, Bong-Oh</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Jaeseong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ryu, Jongseong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khim, Jong Seong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Wang, Meimei ELSEVIER</subfield><subfield code="t">SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal for scientific research into the environment and its relationship with man</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001360035</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:763</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:1</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.scitotenv.2020.142938</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">763</subfield><subfield code="j">2021</subfield><subfield code="b">1</subfield><subfield code="c">0401</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.3985004 |