Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device
Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulatin...
Ausführliche Beschreibung
Autor*in: |
Xie, Liang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners - Jacobs, Jacquelyn A. ELSEVIER, 2017, JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics, Lausanne |
---|---|
Übergeordnetes Werk: |
volume:858 ; year:2021 ; day:25 ; month:03 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jallcom.2020.157652 |
---|
Katalog-ID: |
ELV052895017 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV052895017 | ||
003 | DE-627 | ||
005 | 20230626033925.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jallcom.2020.157652 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001329.pica |
035 | |a (DE-627)ELV052895017 | ||
035 | |a (ELSEVIER)S0925-8388(20)34016-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |q VZ |
100 | 1 | |a Xie, Liang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device |
264 | 1 | |c 2021transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1. | ||
520 | |a Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1. | ||
650 | 7 | |a Nanosheets |2 Elsevier | |
650 | 7 | |a Self-supported |2 Elsevier | |
650 | 7 | |a Asymmetric supercapacitor |2 Elsevier | |
650 | 7 | |a Transition metal phosphides (TMPs) |2 Elsevier | |
700 | 1 | |a Chen, Shixia |4 oth | |
700 | 1 | |a Hu, Yicheng |4 oth | |
700 | 1 | |a Lan, Yeqian |4 oth | |
700 | 1 | |a Li, Xiang |4 oth | |
700 | 1 | |a Deng, Qiang |4 oth | |
700 | 1 | |a Wang, Jun |4 oth | |
700 | 1 | |a Zeng, Zheling |4 oth | |
700 | 1 | |a Deng, Shuguang |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Jacobs, Jacquelyn A. ELSEVIER |t Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners |d 2017 |d JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics |g Lausanne |w (DE-627)ELV001115774 |
773 | 1 | 8 | |g volume:858 |g year:2021 |g day:25 |g month:03 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jallcom.2020.157652 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 858 |j 2021 |b 25 |c 0325 |h 0 |
author_variant |
l x lx |
---|---|
matchkey_str |
xieliangchenshixiahuyichenglanyeqianlixi:2021----:osrcinfhshtzdoatikldnnsetrassidrrelcrdfrihefra |
hierarchy_sort_str |
2021transfer abstract |
publishDate |
2021 |
allfields |
10.1016/j.jallcom.2020.157652 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001329.pica (DE-627)ELV052895017 (ELSEVIER)S0925-8388(20)34016-0 DE-627 ger DE-627 rakwb eng 630 VZ Xie, Liang verfasserin aut Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1. Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1. Nanosheets Elsevier Self-supported Elsevier Asymmetric supercapacitor Elsevier Transition metal phosphides (TMPs) Elsevier Chen, Shixia oth Hu, Yicheng oth Lan, Yeqian oth Li, Xiang oth Deng, Qiang oth Wang, Jun oth Zeng, Zheling oth Deng, Shuguang oth Enthalten in Elsevier Jacobs, Jacquelyn A. ELSEVIER Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners 2017 JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics Lausanne (DE-627)ELV001115774 volume:858 year:2021 day:25 month:03 pages:0 https://doi.org/10.1016/j.jallcom.2020.157652 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 858 2021 25 0325 0 |
spelling |
10.1016/j.jallcom.2020.157652 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001329.pica (DE-627)ELV052895017 (ELSEVIER)S0925-8388(20)34016-0 DE-627 ger DE-627 rakwb eng 630 VZ Xie, Liang verfasserin aut Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1. Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1. Nanosheets Elsevier Self-supported Elsevier Asymmetric supercapacitor Elsevier Transition metal phosphides (TMPs) Elsevier Chen, Shixia oth Hu, Yicheng oth Lan, Yeqian oth Li, Xiang oth Deng, Qiang oth Wang, Jun oth Zeng, Zheling oth Deng, Shuguang oth Enthalten in Elsevier Jacobs, Jacquelyn A. ELSEVIER Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners 2017 JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics Lausanne (DE-627)ELV001115774 volume:858 year:2021 day:25 month:03 pages:0 https://doi.org/10.1016/j.jallcom.2020.157652 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 858 2021 25 0325 0 |
allfields_unstemmed |
10.1016/j.jallcom.2020.157652 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001329.pica (DE-627)ELV052895017 (ELSEVIER)S0925-8388(20)34016-0 DE-627 ger DE-627 rakwb eng 630 VZ Xie, Liang verfasserin aut Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1. Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1. Nanosheets Elsevier Self-supported Elsevier Asymmetric supercapacitor Elsevier Transition metal phosphides (TMPs) Elsevier Chen, Shixia oth Hu, Yicheng oth Lan, Yeqian oth Li, Xiang oth Deng, Qiang oth Wang, Jun oth Zeng, Zheling oth Deng, Shuguang oth Enthalten in Elsevier Jacobs, Jacquelyn A. ELSEVIER Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners 2017 JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics Lausanne (DE-627)ELV001115774 volume:858 year:2021 day:25 month:03 pages:0 https://doi.org/10.1016/j.jallcom.2020.157652 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 858 2021 25 0325 0 |
allfieldsGer |
10.1016/j.jallcom.2020.157652 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001329.pica (DE-627)ELV052895017 (ELSEVIER)S0925-8388(20)34016-0 DE-627 ger DE-627 rakwb eng 630 VZ Xie, Liang verfasserin aut Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1. Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1. Nanosheets Elsevier Self-supported Elsevier Asymmetric supercapacitor Elsevier Transition metal phosphides (TMPs) Elsevier Chen, Shixia oth Hu, Yicheng oth Lan, Yeqian oth Li, Xiang oth Deng, Qiang oth Wang, Jun oth Zeng, Zheling oth Deng, Shuguang oth Enthalten in Elsevier Jacobs, Jacquelyn A. ELSEVIER Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners 2017 JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics Lausanne (DE-627)ELV001115774 volume:858 year:2021 day:25 month:03 pages:0 https://doi.org/10.1016/j.jallcom.2020.157652 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 858 2021 25 0325 0 |
allfieldsSound |
10.1016/j.jallcom.2020.157652 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001329.pica (DE-627)ELV052895017 (ELSEVIER)S0925-8388(20)34016-0 DE-627 ger DE-627 rakwb eng 630 VZ Xie, Liang verfasserin aut Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1. Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1. Nanosheets Elsevier Self-supported Elsevier Asymmetric supercapacitor Elsevier Transition metal phosphides (TMPs) Elsevier Chen, Shixia oth Hu, Yicheng oth Lan, Yeqian oth Li, Xiang oth Deng, Qiang oth Wang, Jun oth Zeng, Zheling oth Deng, Shuguang oth Enthalten in Elsevier Jacobs, Jacquelyn A. ELSEVIER Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners 2017 JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics Lausanne (DE-627)ELV001115774 volume:858 year:2021 day:25 month:03 pages:0 https://doi.org/10.1016/j.jallcom.2020.157652 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 858 2021 25 0325 0 |
language |
English |
source |
Enthalten in Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners Lausanne volume:858 year:2021 day:25 month:03 pages:0 |
sourceStr |
Enthalten in Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners Lausanne volume:858 year:2021 day:25 month:03 pages:0 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Nanosheets Self-supported Asymmetric supercapacitor Transition metal phosphides (TMPs) |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners |
authorswithroles_txt_mv |
Xie, Liang @@aut@@ Chen, Shixia @@oth@@ Hu, Yicheng @@oth@@ Lan, Yeqian @@oth@@ Li, Xiang @@oth@@ Deng, Qiang @@oth@@ Wang, Jun @@oth@@ Zeng, Zheling @@oth@@ Deng, Shuguang @@oth@@ |
publishDateDaySort_date |
2021-01-25T00:00:00Z |
hierarchy_top_id |
ELV001115774 |
dewey-sort |
3630 |
id |
ELV052895017 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052895017</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626033925.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jallcom.2020.157652</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001329.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052895017</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-8388(20)34016-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xie, Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanosheets</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Self-supported</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Asymmetric supercapacitor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transition metal phosphides (TMPs)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Shixia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Yicheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lan, Yeqian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Qiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Zheling</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Shuguang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Jacobs, Jacquelyn A. ELSEVIER</subfield><subfield code="t">Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners</subfield><subfield code="d">2017</subfield><subfield code="d">JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics</subfield><subfield code="g">Lausanne</subfield><subfield code="w">(DE-627)ELV001115774</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:858</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:25</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jallcom.2020.157652</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">858</subfield><subfield code="j">2021</subfield><subfield code="b">25</subfield><subfield code="c">0325</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Xie, Liang |
spellingShingle |
Xie, Liang ddc 630 Elsevier Nanosheets Elsevier Self-supported Elsevier Asymmetric supercapacitor Elsevier Transition metal phosphides (TMPs) Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device |
authorStr |
Xie, Liang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001115774 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
630 VZ Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device Nanosheets Elsevier Self-supported Elsevier Asymmetric supercapacitor Elsevier Transition metal phosphides (TMPs) Elsevier |
topic |
ddc 630 Elsevier Nanosheets Elsevier Self-supported Elsevier Asymmetric supercapacitor Elsevier Transition metal phosphides (TMPs) |
topic_unstemmed |
ddc 630 Elsevier Nanosheets Elsevier Self-supported Elsevier Asymmetric supercapacitor Elsevier Transition metal phosphides (TMPs) |
topic_browse |
ddc 630 Elsevier Nanosheets Elsevier Self-supported Elsevier Asymmetric supercapacitor Elsevier Transition metal phosphides (TMPs) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s c sc y h yh y l yl x l xl q d qd j w jw z z zz s d sd |
hierarchy_parent_title |
Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners |
hierarchy_parent_id |
ELV001115774 |
dewey-tens |
630 - Agriculture |
hierarchy_top_title |
Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001115774 |
title |
Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device |
ctrlnum |
(DE-627)ELV052895017 (ELSEVIER)S0925-8388(20)34016-0 |
title_full |
Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device |
author_sort |
Xie, Liang |
journal |
Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners |
journalStr |
Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Xie, Liang |
container_volume |
858 |
class |
630 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Xie, Liang |
doi_str_mv |
10.1016/j.jallcom.2020.157652 |
dewey-full |
630 |
title_sort |
construction of phosphatized cobalt nickel-ldh nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device |
title_auth |
Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device |
abstract |
Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1. |
abstractGer |
Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1. |
abstract_unstemmed |
Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device |
url |
https://doi.org/10.1016/j.jallcom.2020.157652 |
remote_bool |
true |
author2 |
Chen, Shixia Hu, Yicheng Lan, Yeqian Li, Xiang Deng, Qiang Wang, Jun Zeng, Zheling Deng, Shuguang |
author2Str |
Chen, Shixia Hu, Yicheng Lan, Yeqian Li, Xiang Deng, Qiang Wang, Jun Zeng, Zheling Deng, Shuguang |
ppnlink |
ELV001115774 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.jallcom.2020.157652 |
up_date |
2024-07-06T17:27:34.879Z |
_version_ |
1803851509143699456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052895017</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626033925.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jallcom.2020.157652</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001329.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052895017</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0925-8388(20)34016-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xie, Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Construction of phosphatized cobalt nickel-LDH nanosheet arrays as binder-free electrode for high-performance battery-like supercapacitor device</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cobalt-nickel bimetallic phosphide intersectional nanosheet arrays are fabricated on carbon fiber cloth (CoNi-LDH-350PCFC) via facile one-step hydrothermal synthesis of CoNi-LDH and a sequent phosphating at an optimal temperature (350 °C). Phosphating temperature is proven to be crucial in modulating the morphology and structure of phosphatized LDHs. The CoNi-LDH-350P@CFC nanosheet arrays not only provide sufficient redox-active sites but also boost the electrical conductivity and facilitate the ion and charge transport. Consequently, the CoNi-LDH-350P@CFC as a self-supported electrode could deliver an ultrahigh specific capacity of 803 C g−1 (or 223 mAh g−1) at a current density of 0.5 A g−1 and superior rate retention of 70% at a high rate of 30 A g−1. Furthermore, the assembled CoNi-LDH-350P@CFC//active carbon (AC) asymmetric supercapacitors (ASCs) can exhibit an impressive energy density of 42 Wh kg−1 at a power density of 400.4 W kg−1 with acceptable cycling stability of 87.7% capacitance retention after 3000 cycles at 10 A g−1.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanosheets</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Self-supported</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Asymmetric supercapacitor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transition metal phosphides (TMPs)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Shixia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Yicheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lan, Yeqian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Qiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Zheling</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Shuguang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Jacobs, Jacquelyn A. ELSEVIER</subfield><subfield code="t">Factors associated with canine resource guarding behaviour in the presence of people: A cross-sectional survey of dog owners</subfield><subfield code="d">2017</subfield><subfield code="d">JAL : an interdisciplinary journal of materials science and solid-state chemistry and physics</subfield><subfield code="g">Lausanne</subfield><subfield code="w">(DE-627)ELV001115774</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:858</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:25</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jallcom.2020.157652</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">858</subfield><subfield code="j">2021</subfield><subfield code="b">25</subfield><subfield code="c">0325</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401165 |