Regrowth of bacteria after light-based disinfection — What we know and where we go from here
Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their...
Ausführliche Beschreibung
Autor*in: |
Wang, Manna [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata - Shterenlikht, Anton ELSEVIER, 2019, chemistry, biology and toxicology as related to environmental problems, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:268 ; year:2021 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.chemosphere.2020.128850 |
---|
Katalog-ID: |
ELV052960978 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV052960978 | ||
003 | DE-627 | ||
005 | 20230626034017.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.chemosphere.2020.128850 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001287.pica |
035 | |a (DE-627)ELV052960978 | ||
035 | |a (ELSEVIER)S0045-6535(20)33048-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |a 620 |q VZ |
084 | |a 54.25 |2 bkl | ||
100 | 1 | |a Wang, Manna |e verfasserin |4 aut | |
245 | 1 | 0 | |a Regrowth of bacteria after light-based disinfection — What we know and where we go from here |
264 | 1 | |c 2021transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments. | ||
520 | |a Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments. | ||
650 | 7 | |a Regrowth mechanism |2 Elsevier | |
650 | 7 | |a Light-based disinfection |2 Elsevier | |
650 | 7 | |a Bacteria |2 Elsevier | |
650 | 7 | |a Regrowth tests |2 Elsevier | |
650 | 7 | |a Detection |2 Elsevier | |
700 | 1 | |a Ateia, Mohamed |4 oth | |
700 | 1 | |a Awfa, Dion |4 oth | |
700 | 1 | |a Yoshimura, Chihiro |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Shterenlikht, Anton ELSEVIER |t MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata |d 2019 |d chemistry, biology and toxicology as related to environmental problems |g Amsterdam [u.a.] |w (DE-627)ELV002112701 |
773 | 1 | 8 | |g volume:268 |g year:2021 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.chemosphere.2020.128850 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 54.25 |j Parallele Datenverarbeitung |q VZ |
951 | |a AR | ||
952 | |d 268 |j 2021 |h 0 |
author_variant |
m w mw |
---|---|
matchkey_str |
wangmannaateiamohamedawfadionyoshimurach:2021----:erwhfatrafelgtaedsnetowawko |
hierarchy_sort_str |
2021transfer abstract |
bklnumber |
54.25 |
publishDate |
2021 |
allfields |
10.1016/j.chemosphere.2020.128850 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001287.pica (DE-627)ELV052960978 (ELSEVIER)S0045-6535(20)33048-4 DE-627 ger DE-627 rakwb eng 004 620 VZ 54.25 bkl Wang, Manna verfasserin aut Regrowth of bacteria after light-based disinfection — What we know and where we go from here 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments. Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments. Regrowth mechanism Elsevier Light-based disinfection Elsevier Bacteria Elsevier Regrowth tests Elsevier Detection Elsevier Ateia, Mohamed oth Awfa, Dion oth Yoshimura, Chihiro oth Enthalten in Elsevier Science Shterenlikht, Anton ELSEVIER MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata 2019 chemistry, biology and toxicology as related to environmental problems Amsterdam [u.a.] (DE-627)ELV002112701 volume:268 year:2021 pages:0 https://doi.org/10.1016/j.chemosphere.2020.128850 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.25 Parallele Datenverarbeitung VZ AR 268 2021 0 |
spelling |
10.1016/j.chemosphere.2020.128850 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001287.pica (DE-627)ELV052960978 (ELSEVIER)S0045-6535(20)33048-4 DE-627 ger DE-627 rakwb eng 004 620 VZ 54.25 bkl Wang, Manna verfasserin aut Regrowth of bacteria after light-based disinfection — What we know and where we go from here 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments. Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments. Regrowth mechanism Elsevier Light-based disinfection Elsevier Bacteria Elsevier Regrowth tests Elsevier Detection Elsevier Ateia, Mohamed oth Awfa, Dion oth Yoshimura, Chihiro oth Enthalten in Elsevier Science Shterenlikht, Anton ELSEVIER MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata 2019 chemistry, biology and toxicology as related to environmental problems Amsterdam [u.a.] (DE-627)ELV002112701 volume:268 year:2021 pages:0 https://doi.org/10.1016/j.chemosphere.2020.128850 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.25 Parallele Datenverarbeitung VZ AR 268 2021 0 |
allfields_unstemmed |
10.1016/j.chemosphere.2020.128850 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001287.pica (DE-627)ELV052960978 (ELSEVIER)S0045-6535(20)33048-4 DE-627 ger DE-627 rakwb eng 004 620 VZ 54.25 bkl Wang, Manna verfasserin aut Regrowth of bacteria after light-based disinfection — What we know and where we go from here 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments. Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments. Regrowth mechanism Elsevier Light-based disinfection Elsevier Bacteria Elsevier Regrowth tests Elsevier Detection Elsevier Ateia, Mohamed oth Awfa, Dion oth Yoshimura, Chihiro oth Enthalten in Elsevier Science Shterenlikht, Anton ELSEVIER MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata 2019 chemistry, biology and toxicology as related to environmental problems Amsterdam [u.a.] (DE-627)ELV002112701 volume:268 year:2021 pages:0 https://doi.org/10.1016/j.chemosphere.2020.128850 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.25 Parallele Datenverarbeitung VZ AR 268 2021 0 |
allfieldsGer |
10.1016/j.chemosphere.2020.128850 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001287.pica (DE-627)ELV052960978 (ELSEVIER)S0045-6535(20)33048-4 DE-627 ger DE-627 rakwb eng 004 620 VZ 54.25 bkl Wang, Manna verfasserin aut Regrowth of bacteria after light-based disinfection — What we know and where we go from here 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments. Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments. Regrowth mechanism Elsevier Light-based disinfection Elsevier Bacteria Elsevier Regrowth tests Elsevier Detection Elsevier Ateia, Mohamed oth Awfa, Dion oth Yoshimura, Chihiro oth Enthalten in Elsevier Science Shterenlikht, Anton ELSEVIER MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata 2019 chemistry, biology and toxicology as related to environmental problems Amsterdam [u.a.] (DE-627)ELV002112701 volume:268 year:2021 pages:0 https://doi.org/10.1016/j.chemosphere.2020.128850 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.25 Parallele Datenverarbeitung VZ AR 268 2021 0 |
allfieldsSound |
10.1016/j.chemosphere.2020.128850 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001287.pica (DE-627)ELV052960978 (ELSEVIER)S0045-6535(20)33048-4 DE-627 ger DE-627 rakwb eng 004 620 VZ 54.25 bkl Wang, Manna verfasserin aut Regrowth of bacteria after light-based disinfection — What we know and where we go from here 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments. Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments. Regrowth mechanism Elsevier Light-based disinfection Elsevier Bacteria Elsevier Regrowth tests Elsevier Detection Elsevier Ateia, Mohamed oth Awfa, Dion oth Yoshimura, Chihiro oth Enthalten in Elsevier Science Shterenlikht, Anton ELSEVIER MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata 2019 chemistry, biology and toxicology as related to environmental problems Amsterdam [u.a.] (DE-627)ELV002112701 volume:268 year:2021 pages:0 https://doi.org/10.1016/j.chemosphere.2020.128850 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.25 Parallele Datenverarbeitung VZ AR 268 2021 0 |
language |
English |
source |
Enthalten in MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata Amsterdam [u.a.] volume:268 year:2021 pages:0 |
sourceStr |
Enthalten in MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata Amsterdam [u.a.] volume:268 year:2021 pages:0 |
format_phy_str_mv |
Article |
bklname |
Parallele Datenverarbeitung |
institution |
findex.gbv.de |
topic_facet |
Regrowth mechanism Light-based disinfection Bacteria Regrowth tests Detection |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata |
authorswithroles_txt_mv |
Wang, Manna @@aut@@ Ateia, Mohamed @@oth@@ Awfa, Dion @@oth@@ Yoshimura, Chihiro @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV002112701 |
dewey-sort |
14 |
id |
ELV052960978 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052960978</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626034017.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemosphere.2020.128850</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001287.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052960978</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0045-6535(20)33048-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Manna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regrowth of bacteria after light-based disinfection — What we know and where we go from here</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Regrowth mechanism</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Light-based disinfection</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bacteria</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Regrowth tests</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Detection</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ateia, Mohamed</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Awfa, Dion</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoshimura, Chihiro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Shterenlikht, Anton ELSEVIER</subfield><subfield code="t">MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata</subfield><subfield code="d">2019</subfield><subfield code="d">chemistry, biology and toxicology as related to environmental problems</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV002112701</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:268</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.chemosphere.2020.128850</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.25</subfield><subfield code="j">Parallele Datenverarbeitung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">268</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Wang, Manna |
spellingShingle |
Wang, Manna ddc 004 bkl 54.25 Elsevier Regrowth mechanism Elsevier Light-based disinfection Elsevier Bacteria Elsevier Regrowth tests Elsevier Detection Regrowth of bacteria after light-based disinfection — What we know and where we go from here |
authorStr |
Wang, Manna |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002112701 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 620 VZ 54.25 bkl Regrowth of bacteria after light-based disinfection — What we know and where we go from here Regrowth mechanism Elsevier Light-based disinfection Elsevier Bacteria Elsevier Regrowth tests Elsevier Detection Elsevier |
topic |
ddc 004 bkl 54.25 Elsevier Regrowth mechanism Elsevier Light-based disinfection Elsevier Bacteria Elsevier Regrowth tests Elsevier Detection |
topic_unstemmed |
ddc 004 bkl 54.25 Elsevier Regrowth mechanism Elsevier Light-based disinfection Elsevier Bacteria Elsevier Regrowth tests Elsevier Detection |
topic_browse |
ddc 004 bkl 54.25 Elsevier Regrowth mechanism Elsevier Light-based disinfection Elsevier Bacteria Elsevier Regrowth tests Elsevier Detection |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m a ma d a da c y cy |
hierarchy_parent_title |
MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata |
hierarchy_parent_id |
ELV002112701 |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering |
hierarchy_top_title |
MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002112701 |
title |
Regrowth of bacteria after light-based disinfection — What we know and where we go from here |
ctrlnum |
(DE-627)ELV052960978 (ELSEVIER)S0045-6535(20)33048-4 |
title_full |
Regrowth of bacteria after light-based disinfection — What we know and where we go from here |
author_sort |
Wang, Manna |
journal |
MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata |
journalStr |
MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Wang, Manna |
container_volume |
268 |
class |
004 620 VZ 54.25 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Manna |
doi_str_mv |
10.1016/j.chemosphere.2020.128850 |
dewey-full |
004 620 |
title_sort |
regrowth of bacteria after light-based disinfection — what we know and where we go from here |
title_auth |
Regrowth of bacteria after light-based disinfection — What we know and where we go from here |
abstract |
Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments. |
abstractGer |
Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments. |
abstract_unstemmed |
Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Regrowth of bacteria after light-based disinfection — What we know and where we go from here |
url |
https://doi.org/10.1016/j.chemosphere.2020.128850 |
remote_bool |
true |
author2 |
Ateia, Mohamed Awfa, Dion Yoshimura, Chihiro |
author2Str |
Ateia, Mohamed Awfa, Dion Yoshimura, Chihiro |
ppnlink |
ELV002112701 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.chemosphere.2020.128850 |
up_date |
2024-07-06T17:38:05.789Z |
_version_ |
1803852170700783616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV052960978</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626034017.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chemosphere.2020.128850</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001287.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV052960978</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0045-6535(20)33048-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Manna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regrowth of bacteria after light-based disinfection — What we know and where we go from here</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Regrowth mechanism</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Light-based disinfection</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bacteria</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Regrowth tests</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Detection</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ateia, Mohamed</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Awfa, Dion</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoshimura, Chihiro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Shterenlikht, Anton ELSEVIER</subfield><subfield code="t">MPI vs Fortran coarrays beyond 100k cores: 3D cellular automata</subfield><subfield code="d">2019</subfield><subfield code="d">chemistry, biology and toxicology as related to environmental problems</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV002112701</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:268</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.chemosphere.2020.128850</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.25</subfield><subfield code="j">Parallele Datenverarbeitung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">268</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.3997517 |