Rare earth element organotropism in European eel (Anguilla anguilla)
Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. How...
Ausführliche Beschreibung
Autor*in: |
Lortholarie, Marjorie [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Übergeordnetes Werk: |
Enthalten in: SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota - Wang, Meimei ELSEVIER, 2018, an international journal for scientific research into the environment and its relationship with man, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:766 ; year:2021 ; day:20 ; month:04 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.scitotenv.2020.142513 |
---|
Katalog-ID: |
ELV053038274 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV053038274 | ||
003 | DE-627 | ||
005 | 20230626034122.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.scitotenv.2020.142513 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001297.pica |
035 | |a (DE-627)ELV053038274 | ||
035 | |a (ELSEVIER)S0048-9697(20)36042-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |a 610 |q VZ |
100 | 1 | |a Lortholarie, Marjorie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Rare earth element organotropism in European eel (Anguilla anguilla) |
264 | 1 | |c 2021transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin. | ||
520 | |a Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin. | ||
700 | 1 | |a Poirier, Laurence |4 oth | |
700 | 1 | |a Kamari, Abderrahmane |4 oth | |
700 | 1 | |a Herrenknecht, Christine |4 oth | |
700 | 1 | |a Zalouk-Vergnoux, Aurore |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Wang, Meimei ELSEVIER |t SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |d 2018 |d an international journal for scientific research into the environment and its relationship with man |g Amsterdam [u.a.] |w (DE-627)ELV001360035 |
773 | 1 | 8 | |g volume:766 |g year:2021 |g day:20 |g month:04 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.scitotenv.2020.142513 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 766 |j 2021 |b 20 |c 0420 |h 0 |
author_variant |
m l ml |
---|---|
matchkey_str |
lortholariemarjoriepoirierlaurencekamari:2021----:aeateeetraorpsierpael |
hierarchy_sort_str |
2021transfer abstract |
publishDate |
2021 |
allfields |
10.1016/j.scitotenv.2020.142513 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001297.pica (DE-627)ELV053038274 (ELSEVIER)S0048-9697(20)36042-3 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Lortholarie, Marjorie verfasserin aut Rare earth element organotropism in European eel (Anguilla anguilla) 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin. Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin. Poirier, Laurence oth Kamari, Abderrahmane oth Herrenknecht, Christine oth Zalouk-Vergnoux, Aurore oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:766 year:2021 day:20 month:04 pages:0 https://doi.org/10.1016/j.scitotenv.2020.142513 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 766 2021 20 0420 0 |
spelling |
10.1016/j.scitotenv.2020.142513 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001297.pica (DE-627)ELV053038274 (ELSEVIER)S0048-9697(20)36042-3 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Lortholarie, Marjorie verfasserin aut Rare earth element organotropism in European eel (Anguilla anguilla) 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin. Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin. Poirier, Laurence oth Kamari, Abderrahmane oth Herrenknecht, Christine oth Zalouk-Vergnoux, Aurore oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:766 year:2021 day:20 month:04 pages:0 https://doi.org/10.1016/j.scitotenv.2020.142513 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 766 2021 20 0420 0 |
allfields_unstemmed |
10.1016/j.scitotenv.2020.142513 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001297.pica (DE-627)ELV053038274 (ELSEVIER)S0048-9697(20)36042-3 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Lortholarie, Marjorie verfasserin aut Rare earth element organotropism in European eel (Anguilla anguilla) 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin. Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin. Poirier, Laurence oth Kamari, Abderrahmane oth Herrenknecht, Christine oth Zalouk-Vergnoux, Aurore oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:766 year:2021 day:20 month:04 pages:0 https://doi.org/10.1016/j.scitotenv.2020.142513 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 766 2021 20 0420 0 |
allfieldsGer |
10.1016/j.scitotenv.2020.142513 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001297.pica (DE-627)ELV053038274 (ELSEVIER)S0048-9697(20)36042-3 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Lortholarie, Marjorie verfasserin aut Rare earth element organotropism in European eel (Anguilla anguilla) 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin. Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin. Poirier, Laurence oth Kamari, Abderrahmane oth Herrenknecht, Christine oth Zalouk-Vergnoux, Aurore oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:766 year:2021 day:20 month:04 pages:0 https://doi.org/10.1016/j.scitotenv.2020.142513 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 766 2021 20 0420 0 |
allfieldsSound |
10.1016/j.scitotenv.2020.142513 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001297.pica (DE-627)ELV053038274 (ELSEVIER)S0048-9697(20)36042-3 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Lortholarie, Marjorie verfasserin aut Rare earth element organotropism in European eel (Anguilla anguilla) 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin. Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin. Poirier, Laurence oth Kamari, Abderrahmane oth Herrenknecht, Christine oth Zalouk-Vergnoux, Aurore oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:766 year:2021 day:20 month:04 pages:0 https://doi.org/10.1016/j.scitotenv.2020.142513 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 766 2021 20 0420 0 |
language |
English |
source |
Enthalten in SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota Amsterdam [u.a.] volume:766 year:2021 day:20 month:04 pages:0 |
sourceStr |
Enthalten in SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota Amsterdam [u.a.] volume:766 year:2021 day:20 month:04 pages:0 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
authorswithroles_txt_mv |
Lortholarie, Marjorie @@aut@@ Poirier, Laurence @@oth@@ Kamari, Abderrahmane @@oth@@ Herrenknecht, Christine @@oth@@ Zalouk-Vergnoux, Aurore @@oth@@ |
publishDateDaySort_date |
2021-01-20T00:00:00Z |
hierarchy_top_id |
ELV001360035 |
dewey-sort |
3630 |
id |
ELV053038274 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053038274</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626034122.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.scitotenv.2020.142513</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001297.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053038274</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0048-9697(20)36042-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lortholarie, Marjorie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rare earth element organotropism in European eel (Anguilla anguilla)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Poirier, Laurence</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kamari, Abderrahmane</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herrenknecht, Christine</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zalouk-Vergnoux, Aurore</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Wang, Meimei ELSEVIER</subfield><subfield code="t">SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal for scientific research into the environment and its relationship with man</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001360035</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:766</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:20</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.scitotenv.2020.142513</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">766</subfield><subfield code="j">2021</subfield><subfield code="b">20</subfield><subfield code="c">0420</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Lortholarie, Marjorie |
spellingShingle |
Lortholarie, Marjorie ddc 630 Rare earth element organotropism in European eel (Anguilla anguilla) |
authorStr |
Lortholarie, Marjorie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001360035 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
630 640 610 VZ Rare earth element organotropism in European eel (Anguilla anguilla) |
topic |
ddc 630 |
topic_unstemmed |
ddc 630 |
topic_browse |
ddc 630 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
l p lp a k ak c h ch a z v azv |
hierarchy_parent_title |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
hierarchy_parent_id |
ELV001360035 |
dewey-tens |
630 - Agriculture 640 - Home & family management 610 - Medicine & health |
hierarchy_top_title |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001360035 |
title |
Rare earth element organotropism in European eel (Anguilla anguilla) |
ctrlnum |
(DE-627)ELV053038274 (ELSEVIER)S0048-9697(20)36042-3 |
title_full |
Rare earth element organotropism in European eel (Anguilla anguilla) |
author_sort |
Lortholarie, Marjorie |
journal |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
journalStr |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Lortholarie, Marjorie |
container_volume |
766 |
class |
630 640 610 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Lortholarie, Marjorie |
doi_str_mv |
10.1016/j.scitotenv.2020.142513 |
dewey-full |
630 640 610 |
title_sort |
rare earth element organotropism in european eel (anguilla anguilla) |
title_auth |
Rare earth element organotropism in European eel (Anguilla anguilla) |
abstract |
Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin. |
abstractGer |
Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin. |
abstract_unstemmed |
Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Rare earth element organotropism in European eel (Anguilla anguilla) |
url |
https://doi.org/10.1016/j.scitotenv.2020.142513 |
remote_bool |
true |
author2 |
Poirier, Laurence Kamari, Abderrahmane Herrenknecht, Christine Zalouk-Vergnoux, Aurore |
author2Str |
Poirier, Laurence Kamari, Abderrahmane Herrenknecht, Christine Zalouk-Vergnoux, Aurore |
ppnlink |
ELV001360035 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.scitotenv.2020.142513 |
up_date |
2024-07-06T17:50:16.408Z |
_version_ |
1803852936810332160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053038274</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626034122.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.scitotenv.2020.142513</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001297.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053038274</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0048-9697(20)36042-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lortholarie, Marjorie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rare earth element organotropism in European eel (Anguilla anguilla)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 μg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 μg/kg dw for males; 203.79 ± 111.86 μg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Poirier, Laurence</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kamari, Abderrahmane</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herrenknecht, Christine</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zalouk-Vergnoux, Aurore</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Wang, Meimei ELSEVIER</subfield><subfield code="t">SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal for scientific research into the environment and its relationship with man</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001360035</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:766</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:20</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.scitotenv.2020.142513</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">766</subfield><subfield code="j">2021</subfield><subfield code="b">20</subfield><subfield code="c">0420</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.400923 |