A small-sample faulty line detection method based on generative adversarial networks
• A faulty line detection method based on a lightweight depth separable convolution. • A data augmentation method based on a generative adversarial networks. • The proposed method has high accuracy of faulty line detection on small samples. • The effectiveness of the proposed method is verified by s...
Ausführliche Beschreibung
Autor*in: |
Zhang, Le [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Depthwise separable convolutional networks (DSCNs) Generative adversarial network with Wasserstein distance (WGAN) |
---|
Übergeordnetes Werk: |
Enthalten in: Do denture processing techniques affect the mechanical properties of denture teeth? - Clements, Jody L. ELSEVIER, 2017, an international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:169 ; year:2021 ; day:1 ; month:05 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.eswa.2020.114378 |
---|
Katalog-ID: |
ELV053046390 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV053046390 | ||
003 | DE-627 | ||
005 | 20230624191627.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.eswa.2020.114378 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001293.pica |
035 | |a (DE-627)ELV053046390 | ||
035 | |a (ELSEVIER)S0957-4174(20)31054-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.96 |2 bkl | ||
100 | 1 | |a Zhang, Le |e verfasserin |4 aut | |
245 | 1 | 0 | |a A small-sample faulty line detection method based on generative adversarial networks |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • A faulty line detection method based on a lightweight depth separable convolution. • A data augmentation method based on a generative adversarial networks. • The proposed method has high accuracy of faulty line detection on small samples. • The effectiveness of the proposed method is verified by several experiments. | ||
650 | 7 | |a Depthwise separable convolutional networks (DSCNs) |2 Elsevier | |
650 | 7 | |a Generative adversarial network with Wasserstein distance (WGAN) |2 Elsevier | |
650 | 7 | |a Small current grounded system (SCGS) |2 Elsevier | |
650 | 7 | |a Faulty line detection |2 Elsevier | |
650 | 7 | |a Small sample |2 Elsevier | |
700 | 1 | |a Wei, Hua |4 oth | |
700 | 1 | |a Lyu, Zhongliang |4 oth | |
700 | 1 | |a Wei, Hongbo |4 oth | |
700 | 1 | |a Li, Peijie |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Clements, Jody L. ELSEVIER |t Do denture processing techniques affect the mechanical properties of denture teeth? |d 2017 |d an international journal |g Amsterdam [u.a.] |w (DE-627)ELV000222070 |
773 | 1 | 8 | |g volume:169 |g year:2021 |g day:1 |g month:05 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.eswa.2020.114378 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.96 |j Zahnmedizin |q VZ |
951 | |a AR | ||
952 | |d 169 |j 2021 |b 1 |c 0501 |h 0 |
author_variant |
l z lz |
---|---|
matchkey_str |
zhangleweihualyuzhongliangweihongbolipei:2021----:salapealyieeetomtobsdneeaie |
hierarchy_sort_str |
2021 |
bklnumber |
44.96 |
publishDate |
2021 |
allfields |
10.1016/j.eswa.2020.114378 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001293.pica (DE-627)ELV053046390 (ELSEVIER)S0957-4174(20)31054-X DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Zhang, Le verfasserin aut A small-sample faulty line detection method based on generative adversarial networks 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A faulty line detection method based on a lightweight depth separable convolution. • A data augmentation method based on a generative adversarial networks. • The proposed method has high accuracy of faulty line detection on small samples. • The effectiveness of the proposed method is verified by several experiments. Depthwise separable convolutional networks (DSCNs) Elsevier Generative adversarial network with Wasserstein distance (WGAN) Elsevier Small current grounded system (SCGS) Elsevier Faulty line detection Elsevier Small sample Elsevier Wei, Hua oth Lyu, Zhongliang oth Wei, Hongbo oth Li, Peijie oth Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:169 year:2021 day:1 month:05 pages:0 https://doi.org/10.1016/j.eswa.2020.114378 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 169 2021 1 0501 0 |
spelling |
10.1016/j.eswa.2020.114378 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001293.pica (DE-627)ELV053046390 (ELSEVIER)S0957-4174(20)31054-X DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Zhang, Le verfasserin aut A small-sample faulty line detection method based on generative adversarial networks 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A faulty line detection method based on a lightweight depth separable convolution. • A data augmentation method based on a generative adversarial networks. • The proposed method has high accuracy of faulty line detection on small samples. • The effectiveness of the proposed method is verified by several experiments. Depthwise separable convolutional networks (DSCNs) Elsevier Generative adversarial network with Wasserstein distance (WGAN) Elsevier Small current grounded system (SCGS) Elsevier Faulty line detection Elsevier Small sample Elsevier Wei, Hua oth Lyu, Zhongliang oth Wei, Hongbo oth Li, Peijie oth Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:169 year:2021 day:1 month:05 pages:0 https://doi.org/10.1016/j.eswa.2020.114378 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 169 2021 1 0501 0 |
allfields_unstemmed |
10.1016/j.eswa.2020.114378 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001293.pica (DE-627)ELV053046390 (ELSEVIER)S0957-4174(20)31054-X DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Zhang, Le verfasserin aut A small-sample faulty line detection method based on generative adversarial networks 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A faulty line detection method based on a lightweight depth separable convolution. • A data augmentation method based on a generative adversarial networks. • The proposed method has high accuracy of faulty line detection on small samples. • The effectiveness of the proposed method is verified by several experiments. Depthwise separable convolutional networks (DSCNs) Elsevier Generative adversarial network with Wasserstein distance (WGAN) Elsevier Small current grounded system (SCGS) Elsevier Faulty line detection Elsevier Small sample Elsevier Wei, Hua oth Lyu, Zhongliang oth Wei, Hongbo oth Li, Peijie oth Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:169 year:2021 day:1 month:05 pages:0 https://doi.org/10.1016/j.eswa.2020.114378 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 169 2021 1 0501 0 |
allfieldsGer |
10.1016/j.eswa.2020.114378 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001293.pica (DE-627)ELV053046390 (ELSEVIER)S0957-4174(20)31054-X DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Zhang, Le verfasserin aut A small-sample faulty line detection method based on generative adversarial networks 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A faulty line detection method based on a lightweight depth separable convolution. • A data augmentation method based on a generative adversarial networks. • The proposed method has high accuracy of faulty line detection on small samples. • The effectiveness of the proposed method is verified by several experiments. Depthwise separable convolutional networks (DSCNs) Elsevier Generative adversarial network with Wasserstein distance (WGAN) Elsevier Small current grounded system (SCGS) Elsevier Faulty line detection Elsevier Small sample Elsevier Wei, Hua oth Lyu, Zhongliang oth Wei, Hongbo oth Li, Peijie oth Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:169 year:2021 day:1 month:05 pages:0 https://doi.org/10.1016/j.eswa.2020.114378 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 169 2021 1 0501 0 |
allfieldsSound |
10.1016/j.eswa.2020.114378 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001293.pica (DE-627)ELV053046390 (ELSEVIER)S0957-4174(20)31054-X DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Zhang, Le verfasserin aut A small-sample faulty line detection method based on generative adversarial networks 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A faulty line detection method based on a lightweight depth separable convolution. • A data augmentation method based on a generative adversarial networks. • The proposed method has high accuracy of faulty line detection on small samples. • The effectiveness of the proposed method is verified by several experiments. Depthwise separable convolutional networks (DSCNs) Elsevier Generative adversarial network with Wasserstein distance (WGAN) Elsevier Small current grounded system (SCGS) Elsevier Faulty line detection Elsevier Small sample Elsevier Wei, Hua oth Lyu, Zhongliang oth Wei, Hongbo oth Li, Peijie oth Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:169 year:2021 day:1 month:05 pages:0 https://doi.org/10.1016/j.eswa.2020.114378 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 169 2021 1 0501 0 |
language |
English |
source |
Enthalten in Do denture processing techniques affect the mechanical properties of denture teeth? Amsterdam [u.a.] volume:169 year:2021 day:1 month:05 pages:0 |
sourceStr |
Enthalten in Do denture processing techniques affect the mechanical properties of denture teeth? Amsterdam [u.a.] volume:169 year:2021 day:1 month:05 pages:0 |
format_phy_str_mv |
Article |
bklname |
Zahnmedizin |
institution |
findex.gbv.de |
topic_facet |
Depthwise separable convolutional networks (DSCNs) Generative adversarial network with Wasserstein distance (WGAN) Small current grounded system (SCGS) Faulty line detection Small sample |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Do denture processing techniques affect the mechanical properties of denture teeth? |
authorswithroles_txt_mv |
Zhang, Le @@aut@@ Wei, Hua @@oth@@ Lyu, Zhongliang @@oth@@ Wei, Hongbo @@oth@@ Li, Peijie @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV000222070 |
dewey-sort |
3610 |
id |
ELV053046390 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053046390</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624191627.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2020.114378</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001293.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053046390</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(20)31054-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.96</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Le</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A small-sample faulty line detection method based on generative adversarial networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• A faulty line detection method based on a lightweight depth separable convolution. • A data augmentation method based on a generative adversarial networks. • The proposed method has high accuracy of faulty line detection on small samples. • The effectiveness of the proposed method is verified by several experiments.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Depthwise separable convolutional networks (DSCNs)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Generative adversarial network with Wasserstein distance (WGAN)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Small current grounded system (SCGS)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Faulty line detection</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Small sample</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Hua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lyu, Zhongliang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Hongbo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Peijie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Clements, Jody L. ELSEVIER</subfield><subfield code="t">Do denture processing techniques affect the mechanical properties of denture teeth?</subfield><subfield code="d">2017</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000222070</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:169</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.eswa.2020.114378</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.96</subfield><subfield code="j">Zahnmedizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">169</subfield><subfield code="j">2021</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Zhang, Le |
spellingShingle |
Zhang, Le ddc 610 bkl 44.96 Elsevier Depthwise separable convolutional networks (DSCNs) Elsevier Generative adversarial network with Wasserstein distance (WGAN) Elsevier Small current grounded system (SCGS) Elsevier Faulty line detection Elsevier Small sample A small-sample faulty line detection method based on generative adversarial networks |
authorStr |
Zhang, Le |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000222070 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.96 bkl A small-sample faulty line detection method based on generative adversarial networks Depthwise separable convolutional networks (DSCNs) Elsevier Generative adversarial network with Wasserstein distance (WGAN) Elsevier Small current grounded system (SCGS) Elsevier Faulty line detection Elsevier Small sample Elsevier |
topic |
ddc 610 bkl 44.96 Elsevier Depthwise separable convolutional networks (DSCNs) Elsevier Generative adversarial network with Wasserstein distance (WGAN) Elsevier Small current grounded system (SCGS) Elsevier Faulty line detection Elsevier Small sample |
topic_unstemmed |
ddc 610 bkl 44.96 Elsevier Depthwise separable convolutional networks (DSCNs) Elsevier Generative adversarial network with Wasserstein distance (WGAN) Elsevier Small current grounded system (SCGS) Elsevier Faulty line detection Elsevier Small sample |
topic_browse |
ddc 610 bkl 44.96 Elsevier Depthwise separable convolutional networks (DSCNs) Elsevier Generative adversarial network with Wasserstein distance (WGAN) Elsevier Small current grounded system (SCGS) Elsevier Faulty line detection Elsevier Small sample |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h w hw z l zl h w hw p l pl |
hierarchy_parent_title |
Do denture processing techniques affect the mechanical properties of denture teeth? |
hierarchy_parent_id |
ELV000222070 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Do denture processing techniques affect the mechanical properties of denture teeth? |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000222070 |
title |
A small-sample faulty line detection method based on generative adversarial networks |
ctrlnum |
(DE-627)ELV053046390 (ELSEVIER)S0957-4174(20)31054-X |
title_full |
A small-sample faulty line detection method based on generative adversarial networks |
author_sort |
Zhang, Le |
journal |
Do denture processing techniques affect the mechanical properties of denture teeth? |
journalStr |
Do denture processing techniques affect the mechanical properties of denture teeth? |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Zhang, Le |
container_volume |
169 |
class |
610 VZ 44.96 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Le |
doi_str_mv |
10.1016/j.eswa.2020.114378 |
dewey-full |
610 |
title_sort |
a small-sample faulty line detection method based on generative adversarial networks |
title_auth |
A small-sample faulty line detection method based on generative adversarial networks |
abstract |
• A faulty line detection method based on a lightweight depth separable convolution. • A data augmentation method based on a generative adversarial networks. • The proposed method has high accuracy of faulty line detection on small samples. • The effectiveness of the proposed method is verified by several experiments. |
abstractGer |
• A faulty line detection method based on a lightweight depth separable convolution. • A data augmentation method based on a generative adversarial networks. • The proposed method has high accuracy of faulty line detection on small samples. • The effectiveness of the proposed method is verified by several experiments. |
abstract_unstemmed |
• A faulty line detection method based on a lightweight depth separable convolution. • A data augmentation method based on a generative adversarial networks. • The proposed method has high accuracy of faulty line detection on small samples. • The effectiveness of the proposed method is verified by several experiments. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
A small-sample faulty line detection method based on generative adversarial networks |
url |
https://doi.org/10.1016/j.eswa.2020.114378 |
remote_bool |
true |
author2 |
Wei, Hua Lyu, Zhongliang Wei, Hongbo Li, Peijie |
author2Str |
Wei, Hua Lyu, Zhongliang Wei, Hongbo Li, Peijie |
ppnlink |
ELV000222070 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.eswa.2020.114378 |
up_date |
2024-07-06T17:51:40.829Z |
_version_ |
1803853025333215232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053046390</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624191627.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2020.114378</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001293.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053046390</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(20)31054-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.96</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Le</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A small-sample faulty line detection method based on generative adversarial networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• A faulty line detection method based on a lightweight depth separable convolution. • A data augmentation method based on a generative adversarial networks. • The proposed method has high accuracy of faulty line detection on small samples. • The effectiveness of the proposed method is verified by several experiments.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Depthwise separable convolutional networks (DSCNs)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Generative adversarial network with Wasserstein distance (WGAN)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Small current grounded system (SCGS)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Faulty line detection</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Small sample</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Hua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lyu, Zhongliang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Hongbo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Peijie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Clements, Jody L. ELSEVIER</subfield><subfield code="t">Do denture processing techniques affect the mechanical properties of denture teeth?</subfield><subfield code="d">2017</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000222070</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:169</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.eswa.2020.114378</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.96</subfield><subfield code="j">Zahnmedizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">169</subfield><subfield code="j">2021</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4008694 |