Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed
Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal var...
Ausführliche Beschreibung
Autor*in: |
Waller, Donald M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality - Ren, Chunhui ELSEVIER, 2022, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:284 ; year:2021 ; day:15 ; month:04 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jenvman.2021.112019 |
---|
Katalog-ID: |
ELV053172892 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV053172892 | ||
003 | DE-627 | ||
005 | 20230626034352.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jenvman.2021.112019 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001366.pica |
035 | |a (DE-627)ELV053172892 | ||
035 | |a (ELSEVIER)S0301-4797(21)00081-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 300 |q VZ |
084 | |a 70.00 |2 bkl | ||
084 | |a 71.00 |2 bkl | ||
100 | 1 | |a Waller, Donald M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed |
264 | 1 | |c 2021transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads. | ||
520 | |a Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads. | ||
650 | 7 | |a Surface water impairment |2 Elsevier | |
650 | 7 | |a Nutrient loads |2 Elsevier | |
650 | 7 | |a Total phosphorus |2 Elsevier | |
650 | 7 | |a Watershed |2 Elsevier | |
650 | 7 | |a Water quality |2 Elsevier | |
650 | 7 | |a CAFO |2 Elsevier | |
700 | 1 | |a Meyer, Andrew G. |4 oth | |
700 | 1 | |a Raff, Zach |4 oth | |
700 | 1 | |a Apfelbaum, Steven I. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Ren, Chunhui ELSEVIER |t Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |d 2022 |g Amsterdam [u.a.] |w (DE-627)ELV008002754 |
773 | 1 | 8 | |g volume:284 |g year:2021 |g day:15 |g month:04 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jenvman.2021.112019 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 70.00 |j Sozialwissenschaften allgemein: Allgemeines |q VZ |
936 | b | k | |a 71.00 |j Soziologie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 284 |j 2021 |b 15 |c 0415 |h 0 |
author_variant |
d m w dm dmw |
---|---|
matchkey_str |
wallerdonaldmmeyerandrewgraffzachapfelba:2021----:hfsnrcpttoadgiutrlnesticespopoucnetainad |
hierarchy_sort_str |
2021transfer abstract |
bklnumber |
70.00 71.00 |
publishDate |
2021 |
allfields |
10.1016/j.jenvman.2021.112019 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001366.pica (DE-627)ELV053172892 (ELSEVIER)S0301-4797(21)00081-5 DE-627 ger DE-627 rakwb eng 300 VZ 70.00 bkl 71.00 bkl Waller, Donald M. verfasserin aut Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads. Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads. Surface water impairment Elsevier Nutrient loads Elsevier Total phosphorus Elsevier Watershed Elsevier Water quality Elsevier CAFO Elsevier Meyer, Andrew G. oth Raff, Zach oth Apfelbaum, Steven I. oth Enthalten in Elsevier Ren, Chunhui ELSEVIER Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality 2022 Amsterdam [u.a.] (DE-627)ELV008002754 volume:284 year:2021 day:15 month:04 pages:0 https://doi.org/10.1016/j.jenvman.2021.112019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 284 2021 15 0415 0 |
spelling |
10.1016/j.jenvman.2021.112019 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001366.pica (DE-627)ELV053172892 (ELSEVIER)S0301-4797(21)00081-5 DE-627 ger DE-627 rakwb eng 300 VZ 70.00 bkl 71.00 bkl Waller, Donald M. verfasserin aut Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads. Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads. Surface water impairment Elsevier Nutrient loads Elsevier Total phosphorus Elsevier Watershed Elsevier Water quality Elsevier CAFO Elsevier Meyer, Andrew G. oth Raff, Zach oth Apfelbaum, Steven I. oth Enthalten in Elsevier Ren, Chunhui ELSEVIER Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality 2022 Amsterdam [u.a.] (DE-627)ELV008002754 volume:284 year:2021 day:15 month:04 pages:0 https://doi.org/10.1016/j.jenvman.2021.112019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 284 2021 15 0415 0 |
allfields_unstemmed |
10.1016/j.jenvman.2021.112019 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001366.pica (DE-627)ELV053172892 (ELSEVIER)S0301-4797(21)00081-5 DE-627 ger DE-627 rakwb eng 300 VZ 70.00 bkl 71.00 bkl Waller, Donald M. verfasserin aut Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads. Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads. Surface water impairment Elsevier Nutrient loads Elsevier Total phosphorus Elsevier Watershed Elsevier Water quality Elsevier CAFO Elsevier Meyer, Andrew G. oth Raff, Zach oth Apfelbaum, Steven I. oth Enthalten in Elsevier Ren, Chunhui ELSEVIER Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality 2022 Amsterdam [u.a.] (DE-627)ELV008002754 volume:284 year:2021 day:15 month:04 pages:0 https://doi.org/10.1016/j.jenvman.2021.112019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 284 2021 15 0415 0 |
allfieldsGer |
10.1016/j.jenvman.2021.112019 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001366.pica (DE-627)ELV053172892 (ELSEVIER)S0301-4797(21)00081-5 DE-627 ger DE-627 rakwb eng 300 VZ 70.00 bkl 71.00 bkl Waller, Donald M. verfasserin aut Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads. Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads. Surface water impairment Elsevier Nutrient loads Elsevier Total phosphorus Elsevier Watershed Elsevier Water quality Elsevier CAFO Elsevier Meyer, Andrew G. oth Raff, Zach oth Apfelbaum, Steven I. oth Enthalten in Elsevier Ren, Chunhui ELSEVIER Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality 2022 Amsterdam [u.a.] (DE-627)ELV008002754 volume:284 year:2021 day:15 month:04 pages:0 https://doi.org/10.1016/j.jenvman.2021.112019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 284 2021 15 0415 0 |
allfieldsSound |
10.1016/j.jenvman.2021.112019 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001366.pica (DE-627)ELV053172892 (ELSEVIER)S0301-4797(21)00081-5 DE-627 ger DE-627 rakwb eng 300 VZ 70.00 bkl 71.00 bkl Waller, Donald M. verfasserin aut Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads. Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads. Surface water impairment Elsevier Nutrient loads Elsevier Total phosphorus Elsevier Watershed Elsevier Water quality Elsevier CAFO Elsevier Meyer, Andrew G. oth Raff, Zach oth Apfelbaum, Steven I. oth Enthalten in Elsevier Ren, Chunhui ELSEVIER Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality 2022 Amsterdam [u.a.] (DE-627)ELV008002754 volume:284 year:2021 day:15 month:04 pages:0 https://doi.org/10.1016/j.jenvman.2021.112019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 284 2021 15 0415 0 |
language |
English |
source |
Enthalten in Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality Amsterdam [u.a.] volume:284 year:2021 day:15 month:04 pages:0 |
sourceStr |
Enthalten in Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality Amsterdam [u.a.] volume:284 year:2021 day:15 month:04 pages:0 |
format_phy_str_mv |
Article |
bklname |
Sozialwissenschaften allgemein: Allgemeines Soziologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Surface water impairment Nutrient loads Total phosphorus Watershed Water quality CAFO |
dewey-raw |
300 |
isfreeaccess_bool |
false |
container_title |
Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |
authorswithroles_txt_mv |
Waller, Donald M. @@aut@@ Meyer, Andrew G. @@oth@@ Raff, Zach @@oth@@ Apfelbaum, Steven I. @@oth@@ |
publishDateDaySort_date |
2021-01-15T00:00:00Z |
hierarchy_top_id |
ELV008002754 |
dewey-sort |
3300 |
id |
ELV053172892 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053172892</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626034352.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jenvman.2021.112019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001366.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053172892</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0301-4797(21)00081-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">71.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Waller, Donald M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Surface water impairment</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nutrient loads</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Total phosphorus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Watershed</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Water quality</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CAFO</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meyer, Andrew G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raff, Zach</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Apfelbaum, Steven I.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Ren, Chunhui ELSEVIER</subfield><subfield code="t">Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008002754</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:284</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jenvman.2021.112019</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">70.00</subfield><subfield code="j">Sozialwissenschaften allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">71.00</subfield><subfield code="j">Soziologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">284</subfield><subfield code="j">2021</subfield><subfield code="b">15</subfield><subfield code="c">0415</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Waller, Donald M. |
spellingShingle |
Waller, Donald M. ddc 300 bkl 70.00 bkl 71.00 Elsevier Surface water impairment Elsevier Nutrient loads Elsevier Total phosphorus Elsevier Watershed Elsevier Water quality Elsevier CAFO Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed |
authorStr |
Waller, Donald M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV008002754 |
format |
electronic Article |
dewey-ones |
300 - Social sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
300 VZ 70.00 bkl 71.00 bkl Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed Surface water impairment Elsevier Nutrient loads Elsevier Total phosphorus Elsevier Watershed Elsevier Water quality Elsevier CAFO Elsevier |
topic |
ddc 300 bkl 70.00 bkl 71.00 Elsevier Surface water impairment Elsevier Nutrient loads Elsevier Total phosphorus Elsevier Watershed Elsevier Water quality Elsevier CAFO |
topic_unstemmed |
ddc 300 bkl 70.00 bkl 71.00 Elsevier Surface water impairment Elsevier Nutrient loads Elsevier Total phosphorus Elsevier Watershed Elsevier Water quality Elsevier CAFO |
topic_browse |
ddc 300 bkl 70.00 bkl 71.00 Elsevier Surface water impairment Elsevier Nutrient loads Elsevier Total phosphorus Elsevier Watershed Elsevier Water quality Elsevier CAFO |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
a g m ag agm z r zr s i a si sia |
hierarchy_parent_title |
Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |
hierarchy_parent_id |
ELV008002754 |
dewey-tens |
300 - Social sciences, sociology & anthropology |
hierarchy_top_title |
Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV008002754 |
title |
Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed |
ctrlnum |
(DE-627)ELV053172892 (ELSEVIER)S0301-4797(21)00081-5 |
title_full |
Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed |
author_sort |
Waller, Donald M. |
journal |
Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |
journalStr |
Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Waller, Donald M. |
container_volume |
284 |
class |
300 VZ 70.00 bkl 71.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Waller, Donald M. |
doi_str_mv |
10.1016/j.jenvman.2021.112019 |
dewey-full |
300 |
title_sort |
shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed |
title_auth |
Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed |
abstract |
Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads. |
abstractGer |
Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads. |
abstract_unstemmed |
Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed |
url |
https://doi.org/10.1016/j.jenvman.2021.112019 |
remote_bool |
true |
author2 |
Meyer, Andrew G. Raff, Zach Apfelbaum, Steven I. |
author2Str |
Meyer, Andrew G. Raff, Zach Apfelbaum, Steven I. |
ppnlink |
ELV008002754 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.jenvman.2021.112019 |
up_date |
2024-07-06T18:12:52.947Z |
_version_ |
1803854359244570624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053172892</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626034352.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jenvman.2021.112019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001366.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053172892</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0301-4797(21)00081-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">71.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Waller, Donald M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fertilizers and manure applied to cropland to increase yields are often lost via surface erosion, soil leaching, and runoff, increasing nutrient loads in surface and sub-surface waters, degrading water quality, and worsening the ‘dead zone’ in the Gulf of Mexico. We leverage spatial and temporal variation in agricultural practices and precipitation events to examine how these factors affect stream total phosphorus (TP) concentrations and loads in the Sugar River (Wisconsin), recently listed as impaired. To perform our analysis, we first collected water quality data from 1995 to 2017 from 40 sites along the Sugar River and its tributaries. Starting in 2004, three dairy farms expanded to become concentrated animal feeding operations (CAFOs) in this watershed. We then estimated how time of year, stream position, discharge volume, and proximity to the newly expanded CAFOs affected TP concentrations and loads. Total P concentrations, which ranged from 0.02 to 1.4 mg/L and often exceeded the EPA surface water standard of 0.1 mg/L, increased with increases in stream discharge and proximity to dairy operations, peaking in early spring to mid-summer coincident with extreme precipitation events. Our empirical analysis also shows that TP concentrations downstream from the newly permitted CAFOs increased by 19% relative to upstream concentrations. When examining total daily phosphorus loads (concentration × discharge) from this 780 km2 watershed, we found that loads ranged from 5.88 to 4801 kg. Compared to upstream TP loads, those downstream from the CAFOs increased by 91% after the expansions – over four times that of concentration increases – implying that the rate of downstream phosphorus transfer has increased due to CAFO expansion. Our results argue for standards that focus on loads rather than concentrations and monitoring that includes peak events. As agriculture intensifies and extreme rainfall events become more frequent, it becomes increasingly important to limit soil and TP runoff from manure and fertilizer. Siting CAFOs carefully, limiting their size, and improving farming practices in proximity to CAFOs in spring and early summer could considerably reduce nutrient loads.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Surface water impairment</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nutrient loads</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Total phosphorus</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Watershed</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Water quality</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CAFO</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meyer, Andrew G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raff, Zach</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Apfelbaum, Steven I.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Ren, Chunhui ELSEVIER</subfield><subfield code="t">Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008002754</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:284</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jenvman.2021.112019</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">70.00</subfield><subfield code="j">Sozialwissenschaften allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">71.00</subfield><subfield code="j">Soziologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">284</subfield><subfield code="j">2021</subfield><subfield code="b">15</subfield><subfield code="c">0415</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4008827 |