Long-term mechanical and acoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance
To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared w...
Ausführliche Beschreibung
Autor*in: |
Zha, Ersheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Synthesis, structural and luminescence properties of Ti co-doped ZnO/Zn2SiO4:Mn2+composite phosphor - Ramakrishna, P.V. ELSEVIER, 2014transfer abstract, RMMS, Oxford |
---|---|
Übergeordnetes Werk: |
volume:139 ; year:2021 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.ijrmms.2020.104603 |
---|
Katalog-ID: |
ELV053249305 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV053249305 | ||
003 | DE-627 | ||
005 | 20230626034509.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijrmms.2020.104603 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001315.pica |
035 | |a (DE-627)ELV053249305 | ||
035 | |a (ELSEVIER)S1365-1609(20)30969-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
082 | 0 | 4 | |a 333.7 |a 610 |q VZ |
084 | |a 43.12 |2 bkl | ||
084 | |a 43.13 |2 bkl | ||
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a Zha, Ersheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Long-term mechanical and acoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance |
264 | 1 | |c 2021transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation. | ||
520 | |a To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation. | ||
650 | 7 | |a Long-term creep |2 Elsevier | |
650 | 7 | |a Acoustic emission |2 Elsevier | |
650 | 7 | |a Deeply buried marble |2 Elsevier | |
650 | 7 | |a Excavation disturbance |2 Elsevier | |
700 | 1 | |a Zhang, Zetian |4 oth | |
700 | 1 | |a Zhang, Ru |4 oth | |
700 | 1 | |a Wu, Shiyong |4 oth | |
700 | 1 | |a Li, Cunbao |4 oth | |
700 | 1 | |a Ren, Li |4 oth | |
700 | 1 | |a Gao, Mingzhong |4 oth | |
700 | 1 | |a Zhou, Jifang |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Pergamon |a Ramakrishna, P.V. ELSEVIER |t Synthesis, structural and luminescence properties of Ti co-doped ZnO/Zn2SiO4:Mn2+composite phosphor |d 2014transfer abstract |d RMMS |g Oxford |w (DE-627)ELV017417449 |
773 | 1 | 8 | |g volume:139 |g year:2021 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijrmms.2020.104603 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_120 | ||
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
936 | b | k | |a 43.13 |j Umwelttoxikologie |q VZ |
936 | b | k | |a 44.13 |j Medizinische Ökologie |q VZ |
951 | |a AR | ||
952 | |d 139 |j 2021 |h 0 |
author_variant |
e z ez |
---|---|
matchkey_str |
zhaershengzhangzetianzhangruwushiyonglic:2021----:ogemehnclnaosieisocaatrsisfreidelbrejnigabe |
hierarchy_sort_str |
2021transfer abstract |
bklnumber |
43.12 43.13 44.13 |
publishDate |
2021 |
allfields |
10.1016/j.ijrmms.2020.104603 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001315.pica (DE-627)ELV053249305 (ELSEVIER)S1365-1609(20)30969-2 DE-627 ger DE-627 rakwb eng 670 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Zha, Ersheng verfasserin aut Long-term mechanical and acoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation. To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation. Long-term creep Elsevier Acoustic emission Elsevier Deeply buried marble Elsevier Excavation disturbance Elsevier Zhang, Zetian oth Zhang, Ru oth Wu, Shiyong oth Li, Cunbao oth Ren, Li oth Gao, Mingzhong oth Zhou, Jifang oth Enthalten in Pergamon Ramakrishna, P.V. ELSEVIER Synthesis, structural and luminescence properties of Ti co-doped ZnO/Zn2SiO4:Mn2+composite phosphor 2014transfer abstract RMMS Oxford (DE-627)ELV017417449 volume:139 year:2021 pages:0 https://doi.org/10.1016/j.ijrmms.2020.104603 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_24 GBV_ILN_70 GBV_ILN_105 GBV_ILN_120 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 139 2021 0 |
spelling |
10.1016/j.ijrmms.2020.104603 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001315.pica (DE-627)ELV053249305 (ELSEVIER)S1365-1609(20)30969-2 DE-627 ger DE-627 rakwb eng 670 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Zha, Ersheng verfasserin aut Long-term mechanical and acoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation. To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation. Long-term creep Elsevier Acoustic emission Elsevier Deeply buried marble Elsevier Excavation disturbance Elsevier Zhang, Zetian oth Zhang, Ru oth Wu, Shiyong oth Li, Cunbao oth Ren, Li oth Gao, Mingzhong oth Zhou, Jifang oth Enthalten in Pergamon Ramakrishna, P.V. ELSEVIER Synthesis, structural and luminescence properties of Ti co-doped ZnO/Zn2SiO4:Mn2+composite phosphor 2014transfer abstract RMMS Oxford (DE-627)ELV017417449 volume:139 year:2021 pages:0 https://doi.org/10.1016/j.ijrmms.2020.104603 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_24 GBV_ILN_70 GBV_ILN_105 GBV_ILN_120 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 139 2021 0 |
allfields_unstemmed |
10.1016/j.ijrmms.2020.104603 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001315.pica (DE-627)ELV053249305 (ELSEVIER)S1365-1609(20)30969-2 DE-627 ger DE-627 rakwb eng 670 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Zha, Ersheng verfasserin aut Long-term mechanical and acoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation. To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation. Long-term creep Elsevier Acoustic emission Elsevier Deeply buried marble Elsevier Excavation disturbance Elsevier Zhang, Zetian oth Zhang, Ru oth Wu, Shiyong oth Li, Cunbao oth Ren, Li oth Gao, Mingzhong oth Zhou, Jifang oth Enthalten in Pergamon Ramakrishna, P.V. ELSEVIER Synthesis, structural and luminescence properties of Ti co-doped ZnO/Zn2SiO4:Mn2+composite phosphor 2014transfer abstract RMMS Oxford (DE-627)ELV017417449 volume:139 year:2021 pages:0 https://doi.org/10.1016/j.ijrmms.2020.104603 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_24 GBV_ILN_70 GBV_ILN_105 GBV_ILN_120 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 139 2021 0 |
allfieldsGer |
10.1016/j.ijrmms.2020.104603 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001315.pica (DE-627)ELV053249305 (ELSEVIER)S1365-1609(20)30969-2 DE-627 ger DE-627 rakwb eng 670 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Zha, Ersheng verfasserin aut Long-term mechanical and acoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation. To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation. Long-term creep Elsevier Acoustic emission Elsevier Deeply buried marble Elsevier Excavation disturbance Elsevier Zhang, Zetian oth Zhang, Ru oth Wu, Shiyong oth Li, Cunbao oth Ren, Li oth Gao, Mingzhong oth Zhou, Jifang oth Enthalten in Pergamon Ramakrishna, P.V. ELSEVIER Synthesis, structural and luminescence properties of Ti co-doped ZnO/Zn2SiO4:Mn2+composite phosphor 2014transfer abstract RMMS Oxford (DE-627)ELV017417449 volume:139 year:2021 pages:0 https://doi.org/10.1016/j.ijrmms.2020.104603 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_24 GBV_ILN_70 GBV_ILN_105 GBV_ILN_120 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 139 2021 0 |
allfieldsSound |
10.1016/j.ijrmms.2020.104603 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001315.pica (DE-627)ELV053249305 (ELSEVIER)S1365-1609(20)30969-2 DE-627 ger DE-627 rakwb eng 670 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Zha, Ersheng verfasserin aut Long-term mechanical and acoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation. To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation. Long-term creep Elsevier Acoustic emission Elsevier Deeply buried marble Elsevier Excavation disturbance Elsevier Zhang, Zetian oth Zhang, Ru oth Wu, Shiyong oth Li, Cunbao oth Ren, Li oth Gao, Mingzhong oth Zhou, Jifang oth Enthalten in Pergamon Ramakrishna, P.V. ELSEVIER Synthesis, structural and luminescence properties of Ti co-doped ZnO/Zn2SiO4:Mn2+composite phosphor 2014transfer abstract RMMS Oxford (DE-627)ELV017417449 volume:139 year:2021 pages:0 https://doi.org/10.1016/j.ijrmms.2020.104603 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_24 GBV_ILN_70 GBV_ILN_105 GBV_ILN_120 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 139 2021 0 |
language |
English |
source |
Enthalten in Synthesis, structural and luminescence properties of Ti co-doped ZnO/Zn2SiO4:Mn2+composite phosphor Oxford volume:139 year:2021 pages:0 |
sourceStr |
Enthalten in Synthesis, structural and luminescence properties of Ti co-doped ZnO/Zn2SiO4:Mn2+composite phosphor Oxford volume:139 year:2021 pages:0 |
format_phy_str_mv |
Article |
bklname |
Umweltchemie Umwelttoxikologie Medizinische Ökologie |
institution |
findex.gbv.de |
topic_facet |
Long-term creep Acoustic emission Deeply buried marble Excavation disturbance |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Synthesis, structural and luminescence properties of Ti co-doped ZnO/Zn2SiO4:Mn2+composite phosphor |
authorswithroles_txt_mv |
Zha, Ersheng @@aut@@ Zhang, Zetian @@oth@@ Zhang, Ru @@oth@@ Wu, Shiyong @@oth@@ Li, Cunbao @@oth@@ Ren, Li @@oth@@ Gao, Mingzhong @@oth@@ Zhou, Jifang @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV017417449 |
dewey-sort |
3670 |
id |
ELV053249305 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053249305</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626034509.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijrmms.2020.104603</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001315.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053249305</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1365-1609(20)30969-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zha, Ersheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Long-term mechanical and acoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Long-term creep</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Acoustic emission</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Deeply buried marble</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Excavation disturbance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zetian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Ru</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Shiyong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Cunbao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Li</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Mingzhong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Jifang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Pergamon</subfield><subfield code="a">Ramakrishna, P.V. ELSEVIER</subfield><subfield code="t">Synthesis, structural and luminescence properties of Ti co-doped ZnO/Zn2SiO4:Mn2+composite phosphor</subfield><subfield code="d">2014transfer abstract</subfield><subfield code="d">RMMS</subfield><subfield code="g">Oxford</subfield><subfield code="w">(DE-627)ELV017417449</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:139</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijrmms.2020.104603</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">139</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Zha, Ersheng |
spellingShingle |
Zha, Ersheng ddc 670 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Long-term creep Elsevier Acoustic emission Elsevier Deeply buried marble Elsevier Excavation disturbance Long-term mechanical and acoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance |
authorStr |
Zha, Ersheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV017417449 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing 333 - Economics of land & energy 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Long-term mechanical and acoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance Long-term creep Elsevier Acoustic emission Elsevier Deeply buried marble Elsevier Excavation disturbance Elsevier |
topic |
ddc 670 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Long-term creep Elsevier Acoustic emission Elsevier Deeply buried marble Elsevier Excavation disturbance |
topic_unstemmed |
ddc 670 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Long-term creep Elsevier Acoustic emission Elsevier Deeply buried marble Elsevier Excavation disturbance |
topic_browse |
ddc 670 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Long-term creep Elsevier Acoustic emission Elsevier Deeply buried marble Elsevier Excavation disturbance |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
z z zz r z rz s w sw c l cl l r lr m g mg j z jz |
hierarchy_parent_title |
Synthesis, structural and luminescence properties of Ti co-doped ZnO/Zn2SiO4:Mn2+composite phosphor |
hierarchy_parent_id |
ELV017417449 |
dewey-tens |
670 - Manufacturing 330 - Economics 610 - Medicine & health |
hierarchy_top_title |
Synthesis, structural and luminescence properties of Ti co-doped ZnO/Zn2SiO4:Mn2+composite phosphor |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV017417449 |
title |
Long-term mechanical and acoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance |
ctrlnum |
(DE-627)ELV053249305 (ELSEVIER)S1365-1609(20)30969-2 |
title_full |
Long-term mechanical and acoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance |
author_sort |
Zha, Ersheng |
journal |
Synthesis, structural and luminescence properties of Ti co-doped ZnO/Zn2SiO4:Mn2+composite phosphor |
journalStr |
Synthesis, structural and luminescence properties of Ti co-doped ZnO/Zn2SiO4:Mn2+composite phosphor |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Zha, Ersheng |
container_volume |
139 |
class |
670 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zha, Ersheng |
doi_str_mv |
10.1016/j.ijrmms.2020.104603 |
dewey-full |
670 333.7 610 |
title_sort |
long-term mechanical and acoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance |
title_auth |
Long-term mechanical and acoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance |
abstract |
To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation. |
abstractGer |
To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation. |
abstract_unstemmed |
To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_24 GBV_ILN_70 GBV_ILN_105 GBV_ILN_120 |
title_short |
Long-term mechanical and acoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance |
url |
https://doi.org/10.1016/j.ijrmms.2020.104603 |
remote_bool |
true |
author2 |
Zhang, Zetian Zhang, Ru Wu, Shiyong Li, Cunbao Ren, Li Gao, Mingzhong Zhou, Jifang |
author2Str |
Zhang, Zetian Zhang, Ru Wu, Shiyong Li, Cunbao Ren, Li Gao, Mingzhong Zhou, Jifang |
ppnlink |
ELV017417449 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1016/j.ijrmms.2020.104603 |
up_date |
2024-07-06T18:25:35.387Z |
_version_ |
1803855158719807488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053249305</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626034509.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijrmms.2020.104603</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001315.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053249305</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1365-1609(20)30969-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zha, Ersheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Long-term mechanical and acoustic emission characteristics of creep in deeply buried jinping marble considering excavation disturbance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To obtain a complete understanding of the stability of deep caverns after excavation disturbance, a laboratory simulation method for testing surrounding rock under excavation disturbance was systematically proposed. The rock creep mechanical behavior considering excavation disturbance was compared with that of rock without excavation disturbance, and the results show that the long-term rock strength considering excavation disturbance is significantly lower than that without excavation disturbance at a 2400 m depth. Based on this method, a step-loading triaxial creep and associated acoustic emission (AE) test was carried out with a single-stage loading time of 5 days and a total loading time of approximately 50 days. The results show that with an increase in stress level, the transient strain of the deep rock increases nearly linearly, while the axial creep strain rate increases exponentially. The AE monitoring results demonstrate that when the rock creep transforms from the initial creep stage to the steady-state creep stage, and from the steady-state creep stage to the accelerating stage, the AE amplitude will clearly exhibit a band-shaped distribution, and the AE count rate and AE energy rate will show a single peak or multiple peaks. Multistage AE data can be used to determine the long-term strength of rock. In addition, with an increase in the stress level, the microcracks of the deep rock under excavation disturbance transform from closed primary microcracks to initiating, propagating and coalescence secondary microcracks, which ultimately leads to macroscopic shear failure. The above research results can provide a reference for deep resource exploitation and deep cavern stability evaluation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Long-term creep</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Acoustic emission</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Deeply buried marble</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Excavation disturbance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zetian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Ru</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Shiyong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Cunbao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Li</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Mingzhong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Jifang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Pergamon</subfield><subfield code="a">Ramakrishna, P.V. ELSEVIER</subfield><subfield code="t">Synthesis, structural and luminescence properties of Ti co-doped ZnO/Zn2SiO4:Mn2+composite phosphor</subfield><subfield code="d">2014transfer abstract</subfield><subfield code="d">RMMS</subfield><subfield code="g">Oxford</subfield><subfield code="w">(DE-627)ELV017417449</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:139</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijrmms.2020.104603</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">139</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401355 |