Dopant-free dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole-based hole-transporting materials for efficient perovskite solar cells
Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a c...
Ausführliche Beschreibung
Autor*in: |
Zeng, Qingliang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells - Haghgoo, M. ELSEVIER, 2020, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:188 ; year:2021 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.dyepig.2021.109241 |
---|
Katalog-ID: |
ELV05330313X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV05330313X | ||
003 | DE-627 | ||
005 | 20230626034611.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.dyepig.2021.109241 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001418.pica |
035 | |a (DE-627)ELV05330313X | ||
035 | |a (ELSEVIER)S0143-7208(21)00109-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.31 |2 bkl | ||
084 | |a 56.11 |2 bkl | ||
100 | 1 | |a Zeng, Qingliang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dopant-free dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole-based hole-transporting materials for efficient perovskite solar cells |
264 | 1 | |c 2021transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure. | ||
520 | |a Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure. | ||
650 | 7 | |a Dopant-free |2 Elsevier | |
650 | 7 | |a Hole-transporting materials |2 Elsevier | |
650 | 7 | |a Perovskite solar cells |2 Elsevier | |
650 | 7 | |a Dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole |2 Elsevier | |
700 | 1 | |a Li, Yang |4 oth | |
700 | 1 | |a Tang, Hao |4 oth | |
700 | 1 | |a Fu, Yajie |4 oth | |
700 | 1 | |a Liao, Chaoqiang |4 oth | |
700 | 1 | |a Wang, Lingyun |4 oth | |
700 | 1 | |a Xing, Guichuan |4 oth | |
700 | 1 | |a Cao, Derong |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Haghgoo, M. ELSEVIER |t A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells |d 2020 |g Amsterdam [u.a.] |w (DE-627)ELV004269640 |
773 | 1 | 8 | |g volume:188 |g year:2021 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.dyepig.2021.109241 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 50.31 |j Technische Mechanik |q VZ |
936 | b | k | |a 56.11 |j Baukonstruktion |q VZ |
951 | |a AR | ||
952 | |d 188 |j 2021 |h 0 |
author_variant |
q z qz |
---|---|
matchkey_str |
zengqingliangliyangtanghaofuyajieliaocha:2021----:oatreiheo2436ez1dmdzlbsdoernprigaeilfrf |
hierarchy_sort_str |
2021transfer abstract |
bklnumber |
50.31 56.11 |
publishDate |
2021 |
allfields |
10.1016/j.dyepig.2021.109241 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001418.pica (DE-627)ELV05330313X (ELSEVIER)S0143-7208(21)00109-1 DE-627 ger DE-627 rakwb eng 690 VZ 50.31 bkl 56.11 bkl Zeng, Qingliang verfasserin aut Dopant-free dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole-based hole-transporting materials for efficient perovskite solar cells 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure. Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure. Dopant-free Elsevier Hole-transporting materials Elsevier Perovskite solar cells Elsevier Dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole Elsevier Li, Yang oth Tang, Hao oth Fu, Yajie oth Liao, Chaoqiang oth Wang, Lingyun oth Xing, Guichuan oth Cao, Derong oth Enthalten in Elsevier Science Haghgoo, M. ELSEVIER A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells 2020 Amsterdam [u.a.] (DE-627)ELV004269640 volume:188 year:2021 pages:0 https://doi.org/10.1016/j.dyepig.2021.109241 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 188 2021 0 |
spelling |
10.1016/j.dyepig.2021.109241 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001418.pica (DE-627)ELV05330313X (ELSEVIER)S0143-7208(21)00109-1 DE-627 ger DE-627 rakwb eng 690 VZ 50.31 bkl 56.11 bkl Zeng, Qingliang verfasserin aut Dopant-free dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole-based hole-transporting materials for efficient perovskite solar cells 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure. Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure. Dopant-free Elsevier Hole-transporting materials Elsevier Perovskite solar cells Elsevier Dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole Elsevier Li, Yang oth Tang, Hao oth Fu, Yajie oth Liao, Chaoqiang oth Wang, Lingyun oth Xing, Guichuan oth Cao, Derong oth Enthalten in Elsevier Science Haghgoo, M. ELSEVIER A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells 2020 Amsterdam [u.a.] (DE-627)ELV004269640 volume:188 year:2021 pages:0 https://doi.org/10.1016/j.dyepig.2021.109241 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 188 2021 0 |
allfields_unstemmed |
10.1016/j.dyepig.2021.109241 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001418.pica (DE-627)ELV05330313X (ELSEVIER)S0143-7208(21)00109-1 DE-627 ger DE-627 rakwb eng 690 VZ 50.31 bkl 56.11 bkl Zeng, Qingliang verfasserin aut Dopant-free dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole-based hole-transporting materials for efficient perovskite solar cells 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure. Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure. Dopant-free Elsevier Hole-transporting materials Elsevier Perovskite solar cells Elsevier Dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole Elsevier Li, Yang oth Tang, Hao oth Fu, Yajie oth Liao, Chaoqiang oth Wang, Lingyun oth Xing, Guichuan oth Cao, Derong oth Enthalten in Elsevier Science Haghgoo, M. ELSEVIER A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells 2020 Amsterdam [u.a.] (DE-627)ELV004269640 volume:188 year:2021 pages:0 https://doi.org/10.1016/j.dyepig.2021.109241 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 188 2021 0 |
allfieldsGer |
10.1016/j.dyepig.2021.109241 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001418.pica (DE-627)ELV05330313X (ELSEVIER)S0143-7208(21)00109-1 DE-627 ger DE-627 rakwb eng 690 VZ 50.31 bkl 56.11 bkl Zeng, Qingliang verfasserin aut Dopant-free dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole-based hole-transporting materials for efficient perovskite solar cells 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure. Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure. Dopant-free Elsevier Hole-transporting materials Elsevier Perovskite solar cells Elsevier Dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole Elsevier Li, Yang oth Tang, Hao oth Fu, Yajie oth Liao, Chaoqiang oth Wang, Lingyun oth Xing, Guichuan oth Cao, Derong oth Enthalten in Elsevier Science Haghgoo, M. ELSEVIER A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells 2020 Amsterdam [u.a.] (DE-627)ELV004269640 volume:188 year:2021 pages:0 https://doi.org/10.1016/j.dyepig.2021.109241 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 188 2021 0 |
allfieldsSound |
10.1016/j.dyepig.2021.109241 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001418.pica (DE-627)ELV05330313X (ELSEVIER)S0143-7208(21)00109-1 DE-627 ger DE-627 rakwb eng 690 VZ 50.31 bkl 56.11 bkl Zeng, Qingliang verfasserin aut Dopant-free dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole-based hole-transporting materials for efficient perovskite solar cells 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure. Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure. Dopant-free Elsevier Hole-transporting materials Elsevier Perovskite solar cells Elsevier Dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole Elsevier Li, Yang oth Tang, Hao oth Fu, Yajie oth Liao, Chaoqiang oth Wang, Lingyun oth Xing, Guichuan oth Cao, Derong oth Enthalten in Elsevier Science Haghgoo, M. ELSEVIER A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells 2020 Amsterdam [u.a.] (DE-627)ELV004269640 volume:188 year:2021 pages:0 https://doi.org/10.1016/j.dyepig.2021.109241 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 188 2021 0 |
language |
English |
source |
Enthalten in A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells Amsterdam [u.a.] volume:188 year:2021 pages:0 |
sourceStr |
Enthalten in A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells Amsterdam [u.a.] volume:188 year:2021 pages:0 |
format_phy_str_mv |
Article |
bklname |
Technische Mechanik Baukonstruktion |
institution |
findex.gbv.de |
topic_facet |
Dopant-free Hole-transporting materials Perovskite solar cells Dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells |
authorswithroles_txt_mv |
Zeng, Qingliang @@aut@@ Li, Yang @@oth@@ Tang, Hao @@oth@@ Fu, Yajie @@oth@@ Liao, Chaoqiang @@oth@@ Wang, Lingyun @@oth@@ Xing, Guichuan @@oth@@ Cao, Derong @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV004269640 |
dewey-sort |
3690 |
id |
ELV05330313X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05330313X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626034611.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.dyepig.2021.109241</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001418.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05330313X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0143-7208(21)00109-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zeng, Qingliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dopant-free dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole-based hole-transporting materials for efficient perovskite solar cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dopant-free</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hole-transporting materials</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Perovskite solar cells</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Hao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Yajie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liao, Chaoqiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lingyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xing, Guichuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Derong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Haghgoo, M. ELSEVIER</subfield><subfield code="t">A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV004269640</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:188</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.dyepig.2021.109241</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">188</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Zeng, Qingliang |
spellingShingle |
Zeng, Qingliang ddc 690 bkl 50.31 bkl 56.11 Elsevier Dopant-free Elsevier Hole-transporting materials Elsevier Perovskite solar cells Elsevier Dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole Dopant-free dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole-based hole-transporting materials for efficient perovskite solar cells |
authorStr |
Zeng, Qingliang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV004269640 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 VZ 50.31 bkl 56.11 bkl Dopant-free dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole-based hole-transporting materials for efficient perovskite solar cells Dopant-free Elsevier Hole-transporting materials Elsevier Perovskite solar cells Elsevier Dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole Elsevier |
topic |
ddc 690 bkl 50.31 bkl 56.11 Elsevier Dopant-free Elsevier Hole-transporting materials Elsevier Perovskite solar cells Elsevier Dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole |
topic_unstemmed |
ddc 690 bkl 50.31 bkl 56.11 Elsevier Dopant-free Elsevier Hole-transporting materials Elsevier Perovskite solar cells Elsevier Dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole |
topic_browse |
ddc 690 bkl 50.31 bkl 56.11 Elsevier Dopant-free Elsevier Hole-transporting materials Elsevier Perovskite solar cells Elsevier Dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
y l yl h t ht y f yf c l cl l w lw g x gx d c dc |
hierarchy_parent_title |
A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells |
hierarchy_parent_id |
ELV004269640 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV004269640 |
title |
Dopant-free dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole-based hole-transporting materials for efficient perovskite solar cells |
ctrlnum |
(DE-627)ELV05330313X (ELSEVIER)S0143-7208(21)00109-1 |
title_full |
Dopant-free dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole-based hole-transporting materials for efficient perovskite solar cells |
author_sort |
Zeng, Qingliang |
journal |
A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells |
journalStr |
A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Zeng, Qingliang |
container_volume |
188 |
class |
690 VZ 50.31 bkl 56.11 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zeng, Qingliang |
doi_str_mv |
10.1016/j.dyepig.2021.109241 |
dewey-full |
690 |
title_sort |
dopant-free dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole-based hole-transporting materials for efficient perovskite solar cells |
title_auth |
Dopant-free dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole-based hole-transporting materials for efficient perovskite solar cells |
abstract |
Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure. |
abstractGer |
Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure. |
abstract_unstemmed |
Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Dopant-free dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole-based hole-transporting materials for efficient perovskite solar cells |
url |
https://doi.org/10.1016/j.dyepig.2021.109241 |
remote_bool |
true |
author2 |
Li, Yang Tang, Hao Fu, Yajie Liao, Chaoqiang Wang, Lingyun Xing, Guichuan Cao, Derong |
author2Str |
Li, Yang Tang, Hao Fu, Yajie Liao, Chaoqiang Wang, Lingyun Xing, Guichuan Cao, Derong |
ppnlink |
ELV004269640 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1016/j.dyepig.2021.109241 |
up_date |
2024-07-06T18:34:41.022Z |
_version_ |
1803855730860621824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05330313X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626034611.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.dyepig.2021.109241</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001418.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05330313X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0143-7208(21)00109-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zeng, Qingliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dopant-free dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole-based hole-transporting materials for efficient perovskite solar cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three dopant-free hole-transporting materials (HTMs) M1−3 containing dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole (DTBI) or phenanthro[9,10-d]imidazole (PTI) were designed, synthesized and applied in perovskite solar cells (PSCs), where DTBI and PTI were first introduced as a core structure in the HTMs. Different steric groups (4-methoxybenzene and 4,4′-dimethoxytriphenylamine) were introduced as the periphery groups connected at carbon-2 (C-2) position of imidazole moiety. Accordingly, the relationship between chemical structure and function was systematically investigated with respect to the fused cores and periphery groups, by the measurements of the energy levels, hole mobility, film-forming morphology, extraction and transfer of photo-generated holes, and photovoltaic performances. It was found that M1−2 with DTBI as a core structure exhibited suitable energy levels, higher hole mobility and uniform film-forming morphology, as well as efficient extraction and transfer of photo-generated holes at the perovskite/HTM interfaces. The PSCs using M2 as dopant-free HTM exhibited an impressive power conversion efficiency (PCE) of 16.9% with a negligible hysteresis, surpassing that of the doped spiro-OMeTAD-based standard device (16.4%) under the same testing conditions. Importantly, the unencapsulated PSCs based on dopant-free M2 presented much higher stability than that of doped spiro-OMeTAD. This work provides a promising strategy to construct dopant-free HTMs with both high efficiency and high stability by using DTBI as a core structure.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dopant-free</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hole-transporting materials</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Perovskite solar cells</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dithieno[3′,2':3,4;2″,3'':5,6]benzo[1,2-d]imidazole</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Hao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Yajie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liao, Chaoqiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lingyun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xing, Guichuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Derong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Haghgoo, M. ELSEVIER</subfield><subfield code="t">A multiscale analysis for free vibration of fuzzy fiber-reinforced nanocomposite conical shells</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV004269640</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:188</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.dyepig.2021.109241</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">188</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.3996477 |