Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces
We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and t...
Ausführliche Beschreibung
Autor*in: |
Kumar, Deepak [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis - Niu, Zhenzhen ELSEVIER, 2020, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:491 ; year:2021 ; day:15 ; month:07 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.optcom.2021.126949 |
---|
Katalog-ID: |
ELV053674065 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV053674065 | ||
003 | DE-627 | ||
005 | 20230626035204.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.optcom.2021.126949 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001360.pica |
035 | |a (DE-627)ELV053674065 | ||
035 | |a (ELSEVIER)S0030-4018(21)00199-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 580 |q VZ |
084 | |a AFRIKA |q DE-30 |2 fid | ||
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.38 |2 bkl | ||
100 | 1 | |a Kumar, Deepak |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces |
264 | 1 | |c 2021transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain. | ||
520 | |a We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain. | ||
650 | 7 | |a Slow light |2 Elsevier | |
650 | 7 | |a Graphene |2 Elsevier | |
650 | 7 | |a Subwavelength |2 Elsevier | |
650 | 7 | |a Metasurfaces |2 Elsevier | |
650 | 7 | |a Resonance |2 Elsevier | |
650 | 7 | |a Terahertz |2 Elsevier | |
700 | 1 | |a Devi, Koijam Monika |4 oth | |
700 | 1 | |a Kumar, Ranjan |4 oth | |
700 | 1 | |a Roy Chowdhury, Dibakar |4 oth | |
773 | 0 | 8 | |i Enthalten in |a Niu, Zhenzhen ELSEVIER |t Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |d 2020 |g Amsterdam |w (DE-627)ELV004103645 |
773 | 1 | 8 | |g volume:491 |g year:2021 |g day:15 |g month:07 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.optcom.2021.126949 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-AFRIKA | ||
912 | |a FID-BIODIV | ||
936 | b | k | |a 42.38 |j Botanik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 491 |j 2021 |b 15 |c 0715 |h 0 |
author_variant |
d k dk |
---|---|
matchkey_str |
kumardeepakdevikoijammonikakumarranjanro:2021----:yaialtnbelwihcaatrsisnrpeeae |
hierarchy_sort_str |
2021transfer abstract |
bklnumber |
42.38 |
publishDate |
2021 |
allfields |
10.1016/j.optcom.2021.126949 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001360.pica (DE-627)ELV053674065 (ELSEVIER)S0030-4018(21)00199-1 DE-627 ger DE-627 rakwb eng 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Kumar, Deepak verfasserin aut Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain. We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain. Slow light Elsevier Graphene Elsevier Subwavelength Elsevier Metasurfaces Elsevier Resonance Elsevier Terahertz Elsevier Devi, Koijam Monika oth Kumar, Ranjan oth Roy Chowdhury, Dibakar oth Enthalten in Niu, Zhenzhen ELSEVIER Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis 2020 Amsterdam (DE-627)ELV004103645 volume:491 year:2021 day:15 month:07 pages:0 https://doi.org/10.1016/j.optcom.2021.126949 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV 42.38 Botanik: Allgemeines VZ AR 491 2021 15 0715 0 |
spelling |
10.1016/j.optcom.2021.126949 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001360.pica (DE-627)ELV053674065 (ELSEVIER)S0030-4018(21)00199-1 DE-627 ger DE-627 rakwb eng 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Kumar, Deepak verfasserin aut Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain. We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain. Slow light Elsevier Graphene Elsevier Subwavelength Elsevier Metasurfaces Elsevier Resonance Elsevier Terahertz Elsevier Devi, Koijam Monika oth Kumar, Ranjan oth Roy Chowdhury, Dibakar oth Enthalten in Niu, Zhenzhen ELSEVIER Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis 2020 Amsterdam (DE-627)ELV004103645 volume:491 year:2021 day:15 month:07 pages:0 https://doi.org/10.1016/j.optcom.2021.126949 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV 42.38 Botanik: Allgemeines VZ AR 491 2021 15 0715 0 |
allfields_unstemmed |
10.1016/j.optcom.2021.126949 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001360.pica (DE-627)ELV053674065 (ELSEVIER)S0030-4018(21)00199-1 DE-627 ger DE-627 rakwb eng 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Kumar, Deepak verfasserin aut Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain. We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain. Slow light Elsevier Graphene Elsevier Subwavelength Elsevier Metasurfaces Elsevier Resonance Elsevier Terahertz Elsevier Devi, Koijam Monika oth Kumar, Ranjan oth Roy Chowdhury, Dibakar oth Enthalten in Niu, Zhenzhen ELSEVIER Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis 2020 Amsterdam (DE-627)ELV004103645 volume:491 year:2021 day:15 month:07 pages:0 https://doi.org/10.1016/j.optcom.2021.126949 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV 42.38 Botanik: Allgemeines VZ AR 491 2021 15 0715 0 |
allfieldsGer |
10.1016/j.optcom.2021.126949 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001360.pica (DE-627)ELV053674065 (ELSEVIER)S0030-4018(21)00199-1 DE-627 ger DE-627 rakwb eng 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Kumar, Deepak verfasserin aut Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain. We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain. Slow light Elsevier Graphene Elsevier Subwavelength Elsevier Metasurfaces Elsevier Resonance Elsevier Terahertz Elsevier Devi, Koijam Monika oth Kumar, Ranjan oth Roy Chowdhury, Dibakar oth Enthalten in Niu, Zhenzhen ELSEVIER Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis 2020 Amsterdam (DE-627)ELV004103645 volume:491 year:2021 day:15 month:07 pages:0 https://doi.org/10.1016/j.optcom.2021.126949 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV 42.38 Botanik: Allgemeines VZ AR 491 2021 15 0715 0 |
allfieldsSound |
10.1016/j.optcom.2021.126949 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001360.pica (DE-627)ELV053674065 (ELSEVIER)S0030-4018(21)00199-1 DE-627 ger DE-627 rakwb eng 580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Kumar, Deepak verfasserin aut Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain. We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain. Slow light Elsevier Graphene Elsevier Subwavelength Elsevier Metasurfaces Elsevier Resonance Elsevier Terahertz Elsevier Devi, Koijam Monika oth Kumar, Ranjan oth Roy Chowdhury, Dibakar oth Enthalten in Niu, Zhenzhen ELSEVIER Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis 2020 Amsterdam (DE-627)ELV004103645 volume:491 year:2021 day:15 month:07 pages:0 https://doi.org/10.1016/j.optcom.2021.126949 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV 42.38 Botanik: Allgemeines VZ AR 491 2021 15 0715 0 |
language |
English |
source |
Enthalten in Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis Amsterdam volume:491 year:2021 day:15 month:07 pages:0 |
sourceStr |
Enthalten in Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis Amsterdam volume:491 year:2021 day:15 month:07 pages:0 |
format_phy_str_mv |
Article |
bklname |
Botanik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Slow light Graphene Subwavelength Metasurfaces Resonance Terahertz |
dewey-raw |
580 |
isfreeaccess_bool |
false |
container_title |
Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |
authorswithroles_txt_mv |
Kumar, Deepak @@aut@@ Devi, Koijam Monika @@oth@@ Kumar, Ranjan @@oth@@ Roy Chowdhury, Dibakar @@oth@@ |
publishDateDaySort_date |
2021-01-15T00:00:00Z |
hierarchy_top_id |
ELV004103645 |
dewey-sort |
3580 |
id |
ELV053674065 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053674065</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626035204.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optcom.2021.126949</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001360.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053674065</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0030-4018(21)00199-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AFRIKA</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kumar, Deepak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Slow light</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graphene</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Subwavelength</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metasurfaces</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Resonance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Terahertz</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Devi, Koijam Monika</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, Ranjan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roy Chowdhury, Dibakar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Niu, Zhenzhen ELSEVIER</subfield><subfield code="t">Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV004103645</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:491</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.optcom.2021.126949</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-AFRIKA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.38</subfield><subfield code="j">Botanik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">491</subfield><subfield code="j">2021</subfield><subfield code="b">15</subfield><subfield code="c">0715</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Kumar, Deepak |
spellingShingle |
Kumar, Deepak ddc 580 fid AFRIKA fid BIODIV bkl 42.38 Elsevier Slow light Elsevier Graphene Elsevier Subwavelength Elsevier Metasurfaces Elsevier Resonance Elsevier Terahertz Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces |
authorStr |
Kumar, Deepak |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV004103645 |
format |
electronic Article |
dewey-ones |
580 - Plants (Botany) |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces Slow light Elsevier Graphene Elsevier Subwavelength Elsevier Metasurfaces Elsevier Resonance Elsevier Terahertz Elsevier |
topic |
ddc 580 fid AFRIKA fid BIODIV bkl 42.38 Elsevier Slow light Elsevier Graphene Elsevier Subwavelength Elsevier Metasurfaces Elsevier Resonance Elsevier Terahertz |
topic_unstemmed |
ddc 580 fid AFRIKA fid BIODIV bkl 42.38 Elsevier Slow light Elsevier Graphene Elsevier Subwavelength Elsevier Metasurfaces Elsevier Resonance Elsevier Terahertz |
topic_browse |
ddc 580 fid AFRIKA fid BIODIV bkl 42.38 Elsevier Slow light Elsevier Graphene Elsevier Subwavelength Elsevier Metasurfaces Elsevier Resonance Elsevier Terahertz |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
k m d km kmd r k rk c d r cd cdr |
hierarchy_parent_title |
Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |
hierarchy_parent_id |
ELV004103645 |
dewey-tens |
580 - Plants (Botany) |
hierarchy_top_title |
Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV004103645 |
title |
Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces |
ctrlnum |
(DE-627)ELV053674065 (ELSEVIER)S0030-4018(21)00199-1 |
title_full |
Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces |
author_sort |
Kumar, Deepak |
journal |
Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |
journalStr |
Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Kumar, Deepak |
container_volume |
491 |
class |
580 VZ AFRIKA DE-30 fid BIODIV DE-30 fid 42.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kumar, Deepak |
doi_str_mv |
10.1016/j.optcom.2021.126949 |
dewey-full |
580 |
title_sort |
dynamically tunable slow light characteristics in graphene based terahertz metasurfaces |
title_auth |
Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces |
abstract |
We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain. |
abstractGer |
We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain. |
abstract_unstemmed |
We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-AFRIKA FID-BIODIV |
title_short |
Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces |
url |
https://doi.org/10.1016/j.optcom.2021.126949 |
remote_bool |
true |
author2 |
Devi, Koijam Monika Kumar, Ranjan Roy Chowdhury, Dibakar |
author2Str |
Devi, Koijam Monika Kumar, Ranjan Roy Chowdhury, Dibakar |
ppnlink |
ELV004103645 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.optcom.2021.126949 |
up_date |
2024-07-06T19:36:01.641Z |
_version_ |
1803859590268321792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053674065</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626035204.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optcom.2021.126949</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001360.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053674065</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0030-4018(21)00199-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AFRIKA</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kumar, Deepak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamically tunable slow light characteristics in graphene based terahertz metasurfaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We propose a graphene based metasurface exhibiting dynamic slow light behavior via electromagnetically induced transparency (EIT) effect in the terahertz regime. The unit cell of the metasurface consists of bright and dark graphene rod resonators in a planar orthogonal configuration. The onset and tunability of the EIT effects are investigated through manipulating the near field electromagnetic coupling among the bright and dark resonators. An analytical method based on three level Lorentz oscillator model is employed to validate the simulated results. Further, we investigate the dynamic tunability of EIT effect by altering the Fermi energy of the graphene resonators. A blue shift of 0.59 THz in the EIT transparency peak is observed as the Fermi energy is increased from 0.3 eV to 1.0 eV. Similar dynamic tunability is investigated for the slow light characteristics (i.e., group delay, group index & group velocity) along with the delay bandwidth product. It is observed that an increase in the Fermi energy ultimately leads to an increase in group delay, group index & delay bandwidth product with their corresponding maximum values as 0.76 ps, 22.78 & 0.14 respectively for Fermi energy as 1.0 eV. For this case, the normalized group velocity reaches a minimum value of 0.04, thus, confirming the dynamic tunability of slow light behavior in the studied metasurfaces. Our findings can lead to the development of active slow light components like modulators, sensors, filters, buffers, ultrafast switches, and compact delay lines etc. in the terahertz domain.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Slow light</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graphene</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Subwavelength</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metasurfaces</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Resonance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Terahertz</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Devi, Koijam Monika</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, Ranjan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roy Chowdhury, Dibakar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Niu, Zhenzhen ELSEVIER</subfield><subfield code="t">Effect of hawthorn seed extract on the gastrointestinal function of rats with diabetic gastroparesis</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV004103645</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:491</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.optcom.2021.126949</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-AFRIKA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.38</subfield><subfield code="j">Botanik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">491</subfield><subfield code="j">2021</subfield><subfield code="b">15</subfield><subfield code="c">0715</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401613 |