Extension of ALE method in large deformation analysis of saturated soil under earthquake loading
This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points...
Ausführliche Beschreibung
Autor*in: |
Liu, Shun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: HVC : évolution plus sévère avec le génotype 3 - 2015, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:133 ; year:2021 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.compgeo.2021.104056 |
---|
Katalog-ID: |
ELV053701860 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV053701860 | ||
003 | DE-627 | ||
005 | 20230626035227.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compgeo.2021.104056 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001363.pica |
035 | |a (DE-627)ELV053701860 | ||
035 | |a (ELSEVIER)S0266-352X(21)00059-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 630 |a 640 |a 580 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.00 |2 bkl | ||
100 | 1 | |a Liu, Shun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Extension of ALE method in large deformation analysis of saturated soil under earthquake loading |
264 | 1 | |c 2021transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results. | ||
520 | |a This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results. | ||
650 | 7 | |a Liquefaction |2 Elsevier | |
650 | 7 | |a Radial Basis Function (RBF) |2 Elsevier | |
650 | 7 | |a Operator Splitting Technique |2 Elsevier | |
650 | 7 | |a Arbitrary Lagrangian Eulerian (ALE) |2 Elsevier | |
700 | 1 | |a Tang, Xiaowei |4 oth | |
700 | 1 | |a Li, Jing |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |t HVC : évolution plus sévère avec le génotype 3 |d 2015 |g New York, NY [u.a.] |w (DE-627)ELV018491065 |
773 | 1 | 8 | |g volume:133 |g year:2021 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.compgeo.2021.104056 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
936 | b | k | |a 42.00 |j Biologie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 133 |j 2021 |h 0 |
author_variant |
s l sl |
---|---|
matchkey_str |
liushuntangxiaoweilijing:2021----:xesooaeehdnagdfrainnlssfauaesi |
hierarchy_sort_str |
2021transfer abstract |
bklnumber |
42.00 |
publishDate |
2021 |
allfields |
10.1016/j.compgeo.2021.104056 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001363.pica (DE-627)ELV053701860 (ELSEVIER)S0266-352X(21)00059-8 DE-627 ger DE-627 rakwb eng 600 VZ 610 VZ 630 640 580 VZ BIODIV DE-30 fid 42.00 bkl Liu, Shun verfasserin aut Extension of ALE method in large deformation analysis of saturated soil under earthquake loading 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results. This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results. Liquefaction Elsevier Radial Basis Function (RBF) Elsevier Operator Splitting Technique Elsevier Arbitrary Lagrangian Eulerian (ALE) Elsevier Tang, Xiaowei oth Li, Jing oth Enthalten in Elsevier HVC : évolution plus sévère avec le génotype 3 2015 New York, NY [u.a.] (DE-627)ELV018491065 volume:133 year:2021 pages:0 https://doi.org/10.1016/j.compgeo.2021.104056 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV 42.00 Biologie: Allgemeines VZ AR 133 2021 0 |
spelling |
10.1016/j.compgeo.2021.104056 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001363.pica (DE-627)ELV053701860 (ELSEVIER)S0266-352X(21)00059-8 DE-627 ger DE-627 rakwb eng 600 VZ 610 VZ 630 640 580 VZ BIODIV DE-30 fid 42.00 bkl Liu, Shun verfasserin aut Extension of ALE method in large deformation analysis of saturated soil under earthquake loading 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results. This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results. Liquefaction Elsevier Radial Basis Function (RBF) Elsevier Operator Splitting Technique Elsevier Arbitrary Lagrangian Eulerian (ALE) Elsevier Tang, Xiaowei oth Li, Jing oth Enthalten in Elsevier HVC : évolution plus sévère avec le génotype 3 2015 New York, NY [u.a.] (DE-627)ELV018491065 volume:133 year:2021 pages:0 https://doi.org/10.1016/j.compgeo.2021.104056 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV 42.00 Biologie: Allgemeines VZ AR 133 2021 0 |
allfields_unstemmed |
10.1016/j.compgeo.2021.104056 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001363.pica (DE-627)ELV053701860 (ELSEVIER)S0266-352X(21)00059-8 DE-627 ger DE-627 rakwb eng 600 VZ 610 VZ 630 640 580 VZ BIODIV DE-30 fid 42.00 bkl Liu, Shun verfasserin aut Extension of ALE method in large deformation analysis of saturated soil under earthquake loading 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results. This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results. Liquefaction Elsevier Radial Basis Function (RBF) Elsevier Operator Splitting Technique Elsevier Arbitrary Lagrangian Eulerian (ALE) Elsevier Tang, Xiaowei oth Li, Jing oth Enthalten in Elsevier HVC : évolution plus sévère avec le génotype 3 2015 New York, NY [u.a.] (DE-627)ELV018491065 volume:133 year:2021 pages:0 https://doi.org/10.1016/j.compgeo.2021.104056 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV 42.00 Biologie: Allgemeines VZ AR 133 2021 0 |
allfieldsGer |
10.1016/j.compgeo.2021.104056 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001363.pica (DE-627)ELV053701860 (ELSEVIER)S0266-352X(21)00059-8 DE-627 ger DE-627 rakwb eng 600 VZ 610 VZ 630 640 580 VZ BIODIV DE-30 fid 42.00 bkl Liu, Shun verfasserin aut Extension of ALE method in large deformation analysis of saturated soil under earthquake loading 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results. This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results. Liquefaction Elsevier Radial Basis Function (RBF) Elsevier Operator Splitting Technique Elsevier Arbitrary Lagrangian Eulerian (ALE) Elsevier Tang, Xiaowei oth Li, Jing oth Enthalten in Elsevier HVC : évolution plus sévère avec le génotype 3 2015 New York, NY [u.a.] (DE-627)ELV018491065 volume:133 year:2021 pages:0 https://doi.org/10.1016/j.compgeo.2021.104056 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV 42.00 Biologie: Allgemeines VZ AR 133 2021 0 |
allfieldsSound |
10.1016/j.compgeo.2021.104056 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001363.pica (DE-627)ELV053701860 (ELSEVIER)S0266-352X(21)00059-8 DE-627 ger DE-627 rakwb eng 600 VZ 610 VZ 630 640 580 VZ BIODIV DE-30 fid 42.00 bkl Liu, Shun verfasserin aut Extension of ALE method in large deformation analysis of saturated soil under earthquake loading 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results. This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results. Liquefaction Elsevier Radial Basis Function (RBF) Elsevier Operator Splitting Technique Elsevier Arbitrary Lagrangian Eulerian (ALE) Elsevier Tang, Xiaowei oth Li, Jing oth Enthalten in Elsevier HVC : évolution plus sévère avec le génotype 3 2015 New York, NY [u.a.] (DE-627)ELV018491065 volume:133 year:2021 pages:0 https://doi.org/10.1016/j.compgeo.2021.104056 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV 42.00 Biologie: Allgemeines VZ AR 133 2021 0 |
language |
English |
source |
Enthalten in HVC : évolution plus sévère avec le génotype 3 New York, NY [u.a.] volume:133 year:2021 pages:0 |
sourceStr |
Enthalten in HVC : évolution plus sévère avec le génotype 3 New York, NY [u.a.] volume:133 year:2021 pages:0 |
format_phy_str_mv |
Article |
bklname |
Biologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Liquefaction Radial Basis Function (RBF) Operator Splitting Technique Arbitrary Lagrangian Eulerian (ALE) |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
HVC : évolution plus sévère avec le génotype 3 |
authorswithroles_txt_mv |
Liu, Shun @@aut@@ Tang, Xiaowei @@oth@@ Li, Jing @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV018491065 |
dewey-sort |
3600 |
id |
ELV053701860 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053701860</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626035227.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compgeo.2021.104056</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001363.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053701860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0266-352X(21)00059-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">580</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Shun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extension of ALE method in large deformation analysis of saturated soil under earthquake loading</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Liquefaction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Radial Basis Function (RBF)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Operator Splitting Technique</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Arbitrary Lagrangian Eulerian (ALE)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Xiaowei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="t">HVC : évolution plus sévère avec le génotype 3</subfield><subfield code="d">2015</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV018491065</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:133</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.compgeo.2021.104056</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="j">Biologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">133</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Liu, Shun |
spellingShingle |
Liu, Shun ddc 600 ddc 610 ddc 630 fid BIODIV bkl 42.00 Elsevier Liquefaction Elsevier Radial Basis Function (RBF) Elsevier Operator Splitting Technique Elsevier Arbitrary Lagrangian Eulerian (ALE) Extension of ALE method in large deformation analysis of saturated soil under earthquake loading |
authorStr |
Liu, Shun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV018491065 |
format |
electronic Article |
dewey-ones |
600 - Technology 610 - Medicine & health 630 - Agriculture & related technologies 640 - Home & family management 580 - Plants (Botany) |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
600 VZ 610 VZ 630 640 580 VZ BIODIV DE-30 fid 42.00 bkl Extension of ALE method in large deformation analysis of saturated soil under earthquake loading Liquefaction Elsevier Radial Basis Function (RBF) Elsevier Operator Splitting Technique Elsevier Arbitrary Lagrangian Eulerian (ALE) Elsevier |
topic |
ddc 600 ddc 610 ddc 630 fid BIODIV bkl 42.00 Elsevier Liquefaction Elsevier Radial Basis Function (RBF) Elsevier Operator Splitting Technique Elsevier Arbitrary Lagrangian Eulerian (ALE) |
topic_unstemmed |
ddc 600 ddc 610 ddc 630 fid BIODIV bkl 42.00 Elsevier Liquefaction Elsevier Radial Basis Function (RBF) Elsevier Operator Splitting Technique Elsevier Arbitrary Lagrangian Eulerian (ALE) |
topic_browse |
ddc 600 ddc 610 ddc 630 fid BIODIV bkl 42.00 Elsevier Liquefaction Elsevier Radial Basis Function (RBF) Elsevier Operator Splitting Technique Elsevier Arbitrary Lagrangian Eulerian (ALE) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
x t xt j l jl |
hierarchy_parent_title |
HVC : évolution plus sévère avec le génotype 3 |
hierarchy_parent_id |
ELV018491065 |
dewey-tens |
600 - Technology 610 - Medicine & health 630 - Agriculture 640 - Home & family management 580 - Plants (Botany) |
hierarchy_top_title |
HVC : évolution plus sévère avec le génotype 3 |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV018491065 |
title |
Extension of ALE method in large deformation analysis of saturated soil under earthquake loading |
ctrlnum |
(DE-627)ELV053701860 (ELSEVIER)S0266-352X(21)00059-8 |
title_full |
Extension of ALE method in large deformation analysis of saturated soil under earthquake loading |
author_sort |
Liu, Shun |
journal |
HVC : évolution plus sévère avec le génotype 3 |
journalStr |
HVC : évolution plus sévère avec le génotype 3 |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Liu, Shun |
container_volume |
133 |
class |
600 VZ 610 VZ 630 640 580 VZ BIODIV DE-30 fid 42.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Shun |
doi_str_mv |
10.1016/j.compgeo.2021.104056 |
dewey-full |
600 610 630 640 580 |
title_sort |
extension of ale method in large deformation analysis of saturated soil under earthquake loading |
title_auth |
Extension of ALE method in large deformation analysis of saturated soil under earthquake loading |
abstract |
This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results. |
abstractGer |
This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results. |
abstract_unstemmed |
This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV |
title_short |
Extension of ALE method in large deformation analysis of saturated soil under earthquake loading |
url |
https://doi.org/10.1016/j.compgeo.2021.104056 |
remote_bool |
true |
author2 |
Tang, Xiaowei Li, Jing |
author2Str |
Tang, Xiaowei Li, Jing |
ppnlink |
ELV018491065 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.compgeo.2021.104056 |
up_date |
2024-07-06T19:40:42.793Z |
_version_ |
1803859885077561344 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053701860</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626035227.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compgeo.2021.104056</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001363.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053701860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0266-352X(21)00059-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">580</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Shun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extension of ALE method in large deformation analysis of saturated soil under earthquake loading</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article develops an Arbitrary Lagrangian Eulerian (ALE) finite element program for liquefaction dynamic analysis of saturated sand based on the updated Lagrange finite element program in U-P form. Based on the operator splitting technique, this method adopts the displacements of boundary points and Radial Basis Function (RBF) method to optimize the mesh, and employs super-convergence elements patch and Radial Basis Function (RBF) method to reconstruct variable fields and project variables between old and new configurations. The analytical solutions and numerical solutions of one-dimension consolidation are compared to verify the accuracy of the ALE method. Three typical dynamic liquefaction problems of saturated sand are implemented to measure the applicability of UL method and ALE method. The results show that both methods can provide similar results in the case of small earthquakes. Under strong earthquakes, the UL method fails for large-scale or local mesh distortion, while the proposed ALE can still maintain the health of the mesh and provide satisfactory results.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Liquefaction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Radial Basis Function (RBF)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Operator Splitting Technique</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Arbitrary Lagrangian Eulerian (ALE)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Xiaowei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="t">HVC : évolution plus sévère avec le génotype 3</subfield><subfield code="d">2015</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV018491065</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:133</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.compgeo.2021.104056</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="j">Biologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">133</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401 |