Meromorphic projective structures, grafting and the monodromy map
A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting...
Ausführliche Beschreibung
Autor*in: |
Gupta, Subhojoy [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Evidence of Titan’s climate history from evaporite distribution - MacKenzie, Shannon M. ELSEVIER, 2014, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:383 ; year:2021 ; day:4 ; month:06 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.aim.2021.107673 |
---|
Katalog-ID: |
ELV053722817 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV053722817 | ||
003 | DE-627 | ||
005 | 20230626035242.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.aim.2021.107673 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001628.pica |
035 | |a (DE-627)ELV053722817 | ||
035 | |a (ELSEVIER)S0001-8708(21)00111-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 520 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
082 | 0 | 4 | |a 570 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 44.94 |2 bkl | ||
100 | 1 | |a Gupta, Subhojoy |e verfasserin |4 aut | |
245 | 1 | 0 | |a Meromorphic projective structures, grafting and the monodromy map |
264 | 1 | |c 2021transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism. | ||
520 | |a A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism. | ||
650 | 7 | |a Complex projective structures |2 Elsevier | |
650 | 7 | |a Meromorphic quadratic differentials |2 Elsevier | |
700 | 1 | |a Mj, Mahan |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a MacKenzie, Shannon M. ELSEVIER |t Evidence of Titan’s climate history from evaporite distribution |d 2014 |g Amsterdam [u.a.] |w (DE-627)ELV012586625 |
773 | 1 | 8 | |g volume:383 |g year:2021 |g day:4 |g month:06 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.aim.2021.107673 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_359 | ||
936 | b | k | |a 44.94 |j Hals-Nasen-Ohrenheilkunde |q VZ |
951 | |a AR | ||
952 | |d 383 |j 2021 |b 4 |c 0604 |h 0 |
author_variant |
s g sg |
---|---|
matchkey_str |
guptasubhojoymjmahan:2021----:eoopipoetvsrcuegatnad |
hierarchy_sort_str |
2021transfer abstract |
bklnumber |
44.94 |
publishDate |
2021 |
allfields |
10.1016/j.aim.2021.107673 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001628.pica (DE-627)ELV053722817 (ELSEVIER)S0001-8708(21)00111-0 DE-627 ger DE-627 rakwb eng 520 VZ 530 VZ 570 VZ BIODIV DE-30 fid 44.94 bkl Gupta, Subhojoy verfasserin aut Meromorphic projective structures, grafting and the monodromy map 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism. A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism. Complex projective structures Elsevier Meromorphic quadratic differentials Elsevier Mj, Mahan oth Enthalten in Elsevier MacKenzie, Shannon M. ELSEVIER Evidence of Titan’s climate history from evaporite distribution 2014 Amsterdam [u.a.] (DE-627)ELV012586625 volume:383 year:2021 day:4 month:06 pages:0 https://doi.org/10.1016/j.aim.2021.107673 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_22 GBV_ILN_359 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 383 2021 4 0604 0 |
spelling |
10.1016/j.aim.2021.107673 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001628.pica (DE-627)ELV053722817 (ELSEVIER)S0001-8708(21)00111-0 DE-627 ger DE-627 rakwb eng 520 VZ 530 VZ 570 VZ BIODIV DE-30 fid 44.94 bkl Gupta, Subhojoy verfasserin aut Meromorphic projective structures, grafting and the monodromy map 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism. A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism. Complex projective structures Elsevier Meromorphic quadratic differentials Elsevier Mj, Mahan oth Enthalten in Elsevier MacKenzie, Shannon M. ELSEVIER Evidence of Titan’s climate history from evaporite distribution 2014 Amsterdam [u.a.] (DE-627)ELV012586625 volume:383 year:2021 day:4 month:06 pages:0 https://doi.org/10.1016/j.aim.2021.107673 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_22 GBV_ILN_359 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 383 2021 4 0604 0 |
allfields_unstemmed |
10.1016/j.aim.2021.107673 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001628.pica (DE-627)ELV053722817 (ELSEVIER)S0001-8708(21)00111-0 DE-627 ger DE-627 rakwb eng 520 VZ 530 VZ 570 VZ BIODIV DE-30 fid 44.94 bkl Gupta, Subhojoy verfasserin aut Meromorphic projective structures, grafting and the monodromy map 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism. A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism. Complex projective structures Elsevier Meromorphic quadratic differentials Elsevier Mj, Mahan oth Enthalten in Elsevier MacKenzie, Shannon M. ELSEVIER Evidence of Titan’s climate history from evaporite distribution 2014 Amsterdam [u.a.] (DE-627)ELV012586625 volume:383 year:2021 day:4 month:06 pages:0 https://doi.org/10.1016/j.aim.2021.107673 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_22 GBV_ILN_359 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 383 2021 4 0604 0 |
allfieldsGer |
10.1016/j.aim.2021.107673 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001628.pica (DE-627)ELV053722817 (ELSEVIER)S0001-8708(21)00111-0 DE-627 ger DE-627 rakwb eng 520 VZ 530 VZ 570 VZ BIODIV DE-30 fid 44.94 bkl Gupta, Subhojoy verfasserin aut Meromorphic projective structures, grafting and the monodromy map 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism. A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism. Complex projective structures Elsevier Meromorphic quadratic differentials Elsevier Mj, Mahan oth Enthalten in Elsevier MacKenzie, Shannon M. ELSEVIER Evidence of Titan’s climate history from evaporite distribution 2014 Amsterdam [u.a.] (DE-627)ELV012586625 volume:383 year:2021 day:4 month:06 pages:0 https://doi.org/10.1016/j.aim.2021.107673 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_22 GBV_ILN_359 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 383 2021 4 0604 0 |
allfieldsSound |
10.1016/j.aim.2021.107673 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001628.pica (DE-627)ELV053722817 (ELSEVIER)S0001-8708(21)00111-0 DE-627 ger DE-627 rakwb eng 520 VZ 530 VZ 570 VZ BIODIV DE-30 fid 44.94 bkl Gupta, Subhojoy verfasserin aut Meromorphic projective structures, grafting and the monodromy map 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism. A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism. Complex projective structures Elsevier Meromorphic quadratic differentials Elsevier Mj, Mahan oth Enthalten in Elsevier MacKenzie, Shannon M. ELSEVIER Evidence of Titan’s climate history from evaporite distribution 2014 Amsterdam [u.a.] (DE-627)ELV012586625 volume:383 year:2021 day:4 month:06 pages:0 https://doi.org/10.1016/j.aim.2021.107673 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_22 GBV_ILN_359 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 383 2021 4 0604 0 |
language |
English |
source |
Enthalten in Evidence of Titan’s climate history from evaporite distribution Amsterdam [u.a.] volume:383 year:2021 day:4 month:06 pages:0 |
sourceStr |
Enthalten in Evidence of Titan’s climate history from evaporite distribution Amsterdam [u.a.] volume:383 year:2021 day:4 month:06 pages:0 |
format_phy_str_mv |
Article |
bklname |
Hals-Nasen-Ohrenheilkunde |
institution |
findex.gbv.de |
topic_facet |
Complex projective structures Meromorphic quadratic differentials |
dewey-raw |
520 |
isfreeaccess_bool |
false |
container_title |
Evidence of Titan’s climate history from evaporite distribution |
authorswithroles_txt_mv |
Gupta, Subhojoy @@aut@@ Mj, Mahan @@oth@@ |
publishDateDaySort_date |
2021-01-04T00:00:00Z |
hierarchy_top_id |
ELV012586625 |
dewey-sort |
3520 |
id |
ELV053722817 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053722817</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626035242.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aim.2021.107673</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001628.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053722817</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0001-8708(21)00111-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gupta, Subhojoy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Meromorphic projective structures, grafting and the monodromy map</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Complex projective structures</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Meromorphic quadratic differentials</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mj, Mahan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">MacKenzie, Shannon M. ELSEVIER</subfield><subfield code="t">Evidence of Titan’s climate history from evaporite distribution</subfield><subfield code="d">2014</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV012586625</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:383</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:4</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.aim.2021.107673</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_359</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">383</subfield><subfield code="j">2021</subfield><subfield code="b">4</subfield><subfield code="c">0604</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Gupta, Subhojoy |
spellingShingle |
Gupta, Subhojoy ddc 520 ddc 530 ddc 570 fid BIODIV bkl 44.94 Elsevier Complex projective structures Elsevier Meromorphic quadratic differentials Meromorphic projective structures, grafting and the monodromy map |
authorStr |
Gupta, Subhojoy |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV012586625 |
format |
electronic Article |
dewey-ones |
520 - Astronomy & allied sciences 530 - Physics 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
520 VZ 530 VZ 570 VZ BIODIV DE-30 fid 44.94 bkl Meromorphic projective structures, grafting and the monodromy map Complex projective structures Elsevier Meromorphic quadratic differentials Elsevier |
topic |
ddc 520 ddc 530 ddc 570 fid BIODIV bkl 44.94 Elsevier Complex projective structures Elsevier Meromorphic quadratic differentials |
topic_unstemmed |
ddc 520 ddc 530 ddc 570 fid BIODIV bkl 44.94 Elsevier Complex projective structures Elsevier Meromorphic quadratic differentials |
topic_browse |
ddc 520 ddc 530 ddc 570 fid BIODIV bkl 44.94 Elsevier Complex projective structures Elsevier Meromorphic quadratic differentials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m m mm |
hierarchy_parent_title |
Evidence of Titan’s climate history from evaporite distribution |
hierarchy_parent_id |
ELV012586625 |
dewey-tens |
520 - Astronomy 530 - Physics 570 - Life sciences; biology |
hierarchy_top_title |
Evidence of Titan’s climate history from evaporite distribution |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV012586625 |
title |
Meromorphic projective structures, grafting and the monodromy map |
ctrlnum |
(DE-627)ELV053722817 (ELSEVIER)S0001-8708(21)00111-0 |
title_full |
Meromorphic projective structures, grafting and the monodromy map |
author_sort |
Gupta, Subhojoy |
journal |
Evidence of Titan’s climate history from evaporite distribution |
journalStr |
Evidence of Titan’s climate history from evaporite distribution |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Gupta, Subhojoy |
container_volume |
383 |
class |
520 VZ 530 VZ 570 VZ BIODIV DE-30 fid 44.94 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Gupta, Subhojoy |
doi_str_mv |
10.1016/j.aim.2021.107673 |
dewey-full |
520 530 570 |
title_sort |
meromorphic projective structures, grafting and the monodromy map |
title_auth |
Meromorphic projective structures, grafting and the monodromy map |
abstract |
A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism. |
abstractGer |
A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism. |
abstract_unstemmed |
A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_22 GBV_ILN_359 |
title_short |
Meromorphic projective structures, grafting and the monodromy map |
url |
https://doi.org/10.1016/j.aim.2021.107673 |
remote_bool |
true |
author2 |
Mj, Mahan |
author2Str |
Mj, Mahan |
ppnlink |
ELV012586625 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.aim.2021.107673 |
up_date |
2024-07-06T19:44:10.080Z |
_version_ |
1803860102433734656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053722817</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626035242.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aim.2021.107673</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001628.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053722817</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0001-8708(21)00111-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gupta, Subhojoy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Meromorphic projective structures, grafting and the monodromy map</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A meromorphic projective structure on a punctured Riemann surface X ∖ P is determined, after fixing a standard projective structure on X, by a meromorphic quadratic differential with poles of order three or more at each puncture in P. In this article we prove the analogue of Thurston's grafting theorem for such meromorphic projective structures, that involves grafting crowned hyperbolic surfaces. This also provides a grafting description for projective structures on C that have polynomial Schwarzian derivatives. As an application of our main result, we prove the analogue of a result of Hejhal, namely, we show that the monodromy map to the decorated character variety (in the sense of Fock-Goncharov) is a local homeomorphism.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Complex projective structures</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Meromorphic quadratic differentials</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mj, Mahan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">MacKenzie, Shannon M. ELSEVIER</subfield><subfield code="t">Evidence of Titan’s climate history from evaporite distribution</subfield><subfield code="d">2014</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV012586625</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:383</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:4</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.aim.2021.107673</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_359</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">383</subfield><subfield code="j">2021</subfield><subfield code="b">4</subfield><subfield code="c">0604</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401019 |