Counterfactual state explanations for reinforcement learning agents via generative deep learning
• Deep learning models can generate counterfactual states for game-playing agents. • Generative counterfactual states are sufficiently realistic according to humans. • Counterfactual states can be used for identifying a flawed agent. • Generated counterfactual states outperform nearest neighbors in...
Ausführliche Beschreibung
Autor*in: |
Olson, Matthew L. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study - Hislop, Andrew ELSEVIER, 2022, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:295 ; year:2021 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.artint.2021.103455 |
---|
Katalog-ID: |
ELV053749464 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV053749464 | ||
003 | DE-627 | ||
005 | 20230624201555.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.artint.2021.103455 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001399.pica |
035 | |a (DE-627)ELV053749464 | ||
035 | |a (ELSEVIER)S0004-3702(21)00006-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
100 | 1 | |a Olson, Matthew L. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Counterfactual state explanations for reinforcement learning agents via generative deep learning |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • Deep learning models can generate counterfactual states for game-playing agents. • Generative counterfactual states are sufficiently realistic according to humans. • Counterfactual states can be used for identifying a flawed agent. • Generated counterfactual states outperform nearest neighbors in flaw detection. | ||
650 | 7 | |a Deep learning |2 Elsevier | |
650 | 7 | |a Explainable AI |2 Elsevier | |
650 | 7 | |a Reinforcement learning |2 Elsevier | |
650 | 7 | |a Interpretable AI |2 Elsevier | |
700 | 1 | |a Khanna, Roli |4 oth | |
700 | 1 | |a Neal, Lawrence |4 oth | |
700 | 1 | |a Li, Fuxin |4 oth | |
700 | 1 | |a Wong, Weng-Keen |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Hislop, Andrew ELSEVIER |t The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study |d 2022 |g Amsterdam |w (DE-627)ELV009286330 |
773 | 1 | 8 | |g volume:295 |g year:2021 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.artint.2021.103455 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 295 |j 2021 |h 0 |
author_variant |
m l o ml mlo |
---|---|
matchkey_str |
olsonmatthewlkhannarolineallawrencelifux:2021----:onefculttepaainfrenocmnlannaetv |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1016/j.artint.2021.103455 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001399.pica (DE-627)ELV053749464 (ELSEVIER)S0004-3702(21)00006-0 DE-627 ger DE-627 rakwb eng 610 VZ Olson, Matthew L. verfasserin aut Counterfactual state explanations for reinforcement learning agents via generative deep learning 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Deep learning models can generate counterfactual states for game-playing agents. • Generative counterfactual states are sufficiently realistic according to humans. • Counterfactual states can be used for identifying a flawed agent. • Generated counterfactual states outperform nearest neighbors in flaw detection. Deep learning Elsevier Explainable AI Elsevier Reinforcement learning Elsevier Interpretable AI Elsevier Khanna, Roli oth Neal, Lawrence oth Li, Fuxin oth Wong, Weng-Keen oth Enthalten in Elsevier Hislop, Andrew ELSEVIER The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study 2022 Amsterdam (DE-627)ELV009286330 volume:295 year:2021 pages:0 https://doi.org/10.1016/j.artint.2021.103455 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 295 2021 0 |
spelling |
10.1016/j.artint.2021.103455 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001399.pica (DE-627)ELV053749464 (ELSEVIER)S0004-3702(21)00006-0 DE-627 ger DE-627 rakwb eng 610 VZ Olson, Matthew L. verfasserin aut Counterfactual state explanations for reinforcement learning agents via generative deep learning 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Deep learning models can generate counterfactual states for game-playing agents. • Generative counterfactual states are sufficiently realistic according to humans. • Counterfactual states can be used for identifying a flawed agent. • Generated counterfactual states outperform nearest neighbors in flaw detection. Deep learning Elsevier Explainable AI Elsevier Reinforcement learning Elsevier Interpretable AI Elsevier Khanna, Roli oth Neal, Lawrence oth Li, Fuxin oth Wong, Weng-Keen oth Enthalten in Elsevier Hislop, Andrew ELSEVIER The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study 2022 Amsterdam (DE-627)ELV009286330 volume:295 year:2021 pages:0 https://doi.org/10.1016/j.artint.2021.103455 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 295 2021 0 |
allfields_unstemmed |
10.1016/j.artint.2021.103455 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001399.pica (DE-627)ELV053749464 (ELSEVIER)S0004-3702(21)00006-0 DE-627 ger DE-627 rakwb eng 610 VZ Olson, Matthew L. verfasserin aut Counterfactual state explanations for reinforcement learning agents via generative deep learning 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Deep learning models can generate counterfactual states for game-playing agents. • Generative counterfactual states are sufficiently realistic according to humans. • Counterfactual states can be used for identifying a flawed agent. • Generated counterfactual states outperform nearest neighbors in flaw detection. Deep learning Elsevier Explainable AI Elsevier Reinforcement learning Elsevier Interpretable AI Elsevier Khanna, Roli oth Neal, Lawrence oth Li, Fuxin oth Wong, Weng-Keen oth Enthalten in Elsevier Hislop, Andrew ELSEVIER The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study 2022 Amsterdam (DE-627)ELV009286330 volume:295 year:2021 pages:0 https://doi.org/10.1016/j.artint.2021.103455 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 295 2021 0 |
allfieldsGer |
10.1016/j.artint.2021.103455 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001399.pica (DE-627)ELV053749464 (ELSEVIER)S0004-3702(21)00006-0 DE-627 ger DE-627 rakwb eng 610 VZ Olson, Matthew L. verfasserin aut Counterfactual state explanations for reinforcement learning agents via generative deep learning 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Deep learning models can generate counterfactual states for game-playing agents. • Generative counterfactual states are sufficiently realistic according to humans. • Counterfactual states can be used for identifying a flawed agent. • Generated counterfactual states outperform nearest neighbors in flaw detection. Deep learning Elsevier Explainable AI Elsevier Reinforcement learning Elsevier Interpretable AI Elsevier Khanna, Roli oth Neal, Lawrence oth Li, Fuxin oth Wong, Weng-Keen oth Enthalten in Elsevier Hislop, Andrew ELSEVIER The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study 2022 Amsterdam (DE-627)ELV009286330 volume:295 year:2021 pages:0 https://doi.org/10.1016/j.artint.2021.103455 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 295 2021 0 |
allfieldsSound |
10.1016/j.artint.2021.103455 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001399.pica (DE-627)ELV053749464 (ELSEVIER)S0004-3702(21)00006-0 DE-627 ger DE-627 rakwb eng 610 VZ Olson, Matthew L. verfasserin aut Counterfactual state explanations for reinforcement learning agents via generative deep learning 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Deep learning models can generate counterfactual states for game-playing agents. • Generative counterfactual states are sufficiently realistic according to humans. • Counterfactual states can be used for identifying a flawed agent. • Generated counterfactual states outperform nearest neighbors in flaw detection. Deep learning Elsevier Explainable AI Elsevier Reinforcement learning Elsevier Interpretable AI Elsevier Khanna, Roli oth Neal, Lawrence oth Li, Fuxin oth Wong, Weng-Keen oth Enthalten in Elsevier Hislop, Andrew ELSEVIER The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study 2022 Amsterdam (DE-627)ELV009286330 volume:295 year:2021 pages:0 https://doi.org/10.1016/j.artint.2021.103455 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 295 2021 0 |
language |
English |
source |
Enthalten in The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study Amsterdam volume:295 year:2021 pages:0 |
sourceStr |
Enthalten in The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study Amsterdam volume:295 year:2021 pages:0 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Deep learning Explainable AI Reinforcement learning Interpretable AI |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study |
authorswithroles_txt_mv |
Olson, Matthew L. @@aut@@ Khanna, Roli @@oth@@ Neal, Lawrence @@oth@@ Li, Fuxin @@oth@@ Wong, Weng-Keen @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV009286330 |
dewey-sort |
3610 |
id |
ELV053749464 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053749464</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624201555.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.artint.2021.103455</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001399.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053749464</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0004-3702(21)00006-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Olson, Matthew L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Counterfactual state explanations for reinforcement learning agents via generative deep learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Deep learning models can generate counterfactual states for game-playing agents. • Generative counterfactual states are sufficiently realistic according to humans. • Counterfactual states can be used for identifying a flawed agent. • Generated counterfactual states outperform nearest neighbors in flaw detection.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Deep learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Explainable AI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reinforcement learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Interpretable AI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khanna, Roli</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neal, Lawrence</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Fuxin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wong, Weng-Keen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Hislop, Andrew ELSEVIER</subfield><subfield code="t">The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV009286330</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:295</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.artint.2021.103455</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">295</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Olson, Matthew L. |
spellingShingle |
Olson, Matthew L. ddc 610 Elsevier Deep learning Elsevier Explainable AI Elsevier Reinforcement learning Elsevier Interpretable AI Counterfactual state explanations for reinforcement learning agents via generative deep learning |
authorStr |
Olson, Matthew L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV009286330 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ Counterfactual state explanations for reinforcement learning agents via generative deep learning Deep learning Elsevier Explainable AI Elsevier Reinforcement learning Elsevier Interpretable AI Elsevier |
topic |
ddc 610 Elsevier Deep learning Elsevier Explainable AI Elsevier Reinforcement learning Elsevier Interpretable AI |
topic_unstemmed |
ddc 610 Elsevier Deep learning Elsevier Explainable AI Elsevier Reinforcement learning Elsevier Interpretable AI |
topic_browse |
ddc 610 Elsevier Deep learning Elsevier Explainable AI Elsevier Reinforcement learning Elsevier Interpretable AI |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
r k rk l n ln f l fl w k w wkw |
hierarchy_parent_title |
The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study |
hierarchy_parent_id |
ELV009286330 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV009286330 |
title |
Counterfactual state explanations for reinforcement learning agents via generative deep learning |
ctrlnum |
(DE-627)ELV053749464 (ELSEVIER)S0004-3702(21)00006-0 |
title_full |
Counterfactual state explanations for reinforcement learning agents via generative deep learning |
author_sort |
Olson, Matthew L. |
journal |
The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study |
journalStr |
The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Olson, Matthew L. |
container_volume |
295 |
class |
610 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Olson, Matthew L. |
doi_str_mv |
10.1016/j.artint.2021.103455 |
dewey-full |
610 |
title_sort |
counterfactual state explanations for reinforcement learning agents via generative deep learning |
title_auth |
Counterfactual state explanations for reinforcement learning agents via generative deep learning |
abstract |
• Deep learning models can generate counterfactual states for game-playing agents. • Generative counterfactual states are sufficiently realistic according to humans. • Counterfactual states can be used for identifying a flawed agent. • Generated counterfactual states outperform nearest neighbors in flaw detection. |
abstractGer |
• Deep learning models can generate counterfactual states for game-playing agents. • Generative counterfactual states are sufficiently realistic according to humans. • Counterfactual states can be used for identifying a flawed agent. • Generated counterfactual states outperform nearest neighbors in flaw detection. |
abstract_unstemmed |
• Deep learning models can generate counterfactual states for game-playing agents. • Generative counterfactual states are sufficiently realistic according to humans. • Counterfactual states can be used for identifying a flawed agent. • Generated counterfactual states outperform nearest neighbors in flaw detection. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Counterfactual state explanations for reinforcement learning agents via generative deep learning |
url |
https://doi.org/10.1016/j.artint.2021.103455 |
remote_bool |
true |
author2 |
Khanna, Roli Neal, Lawrence Li, Fuxin Wong, Weng-Keen |
author2Str |
Khanna, Roli Neal, Lawrence Li, Fuxin Wong, Weng-Keen |
ppnlink |
ELV009286330 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.artint.2021.103455 |
up_date |
2024-07-06T19:48:38.335Z |
_version_ |
1803860383719489536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053749464</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624201555.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.artint.2021.103455</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001399.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053749464</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0004-3702(21)00006-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Olson, Matthew L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Counterfactual state explanations for reinforcement learning agents via generative deep learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Deep learning models can generate counterfactual states for game-playing agents. • Generative counterfactual states are sufficiently realistic according to humans. • Counterfactual states can be used for identifying a flawed agent. • Generated counterfactual states outperform nearest neighbors in flaw detection.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Deep learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Explainable AI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reinforcement learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Interpretable AI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khanna, Roli</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neal, Lawrence</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Fuxin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wong, Weng-Keen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Hislop, Andrew ELSEVIER</subfield><subfield code="t">The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV009286330</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:295</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.artint.2021.103455</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">295</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.40086 |