Counterfactual state explanations for reinforcement learning agents via generative deep learning

• Deep learning models can generate counterfactual states for game-playing agents. • Generative counterfactual states are sufficiently realistic according to humans. • Counterfactual states can be used for identifying a flawed agent. • Generated counterfactual states outperform nearest neighbors in...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Olson, Matthew L. [verfasserIn]

Khanna, Roli

Neal, Lawrence

Li, Fuxin

Wong, Weng-Keen

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2021

Schlagwörter:

Deep learning

Explainable AI

Reinforcement learning

Interpretable AI

Übergeordnetes Werk:

Enthalten in: The association between hip strength, physical function and dynamic balance in people with unilateral knee osteoarthritis: A cross-sectional study - Hislop, Andrew ELSEVIER, 2022, Amsterdam

Übergeordnetes Werk:

volume:295 ; year:2021 ; pages:0

Links:

Volltext

DOI / URN:

10.1016/j.artint.2021.103455

Katalog-ID:

ELV053749464

Nicht das Richtige dabei?

Schreiben Sie uns!