Using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a West Africa river–estuary system
• Mollusc community ecology analysis using SOM and machine learning models. • SOM in conjunction with IndVal, LDA and RF models are effective tools. • Mollusc assemblages are structured by physicochemical variables related to the river–estuary continuum. • Progressively downstream ward habitats face...
Ausführliche Beschreibung
Autor*in: |
Koudenoukpo, Zinsou Cosme [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms - Keyan, Dharani ELSEVIER, 2019, integrating monitoring, assessment and management, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:126 ; year:2021 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.ecolind.2021.107706 |
---|
Katalog-ID: |
ELV053843320 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV053843320 | ||
003 | DE-627 | ||
005 | 20230624202410.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ecolind.2021.107706 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001482.pica |
035 | |a (DE-627)ELV053843320 | ||
035 | |a (ELSEVIER)S1470-160X(21)00371-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 150 |a 610 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 77.50 |2 bkl | ||
084 | |a 44.90 |2 bkl | ||
100 | 1 | |a Koudenoukpo, Zinsou Cosme |e verfasserin |4 aut | |
245 | 1 | 0 | |a Using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a West Africa river–estuary system |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • Mollusc community ecology analysis using SOM and machine learning models. • SOM in conjunction with IndVal, LDA and RF models are effective tools. • Mollusc assemblages are structured by physicochemical variables related to the river–estuary continuum. • Progressively downstream ward habitats faced to increasing anthropogenic stress. • Our approach can likely be applied for a variety of freshwater systems. | ||
650 | 7 | |a Mollusc community |2 Elsevier | |
650 | 7 | |a Tropical river systems |2 Elsevier | |
650 | 7 | |a Freshwater biodiversity |2 Elsevier | |
650 | 7 | |a Ecology |2 Elsevier | |
650 | 7 | |a Modelling |2 Elsevier | |
650 | 7 | |a Artificial neural network |2 Elsevier | |
700 | 1 | |a Odountan, Olaniran Hamed |4 oth | |
700 | 1 | |a Agboho, Prudenciène Ablawa |4 oth | |
700 | 1 | |a Dalu, Tatenda |4 oth | |
700 | 1 | |a Van Bocxlaer, Bert |4 oth | |
700 | 1 | |a Janssens de Bistoven, Luc |4 oth | |
700 | 1 | |a Chikou, Antoine |4 oth | |
700 | 1 | |a Backeljau, Thierry |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Keyan, Dharani ELSEVIER |t The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms |d 2019 |d integrating monitoring, assessment and management |g Amsterdam [u.a.] |w (DE-627)ELV003175588 |
773 | 1 | 8 | |g volume:126 |g year:2021 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ecolind.2021.107706 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 77.50 |j Psychophysiologie |q VZ |
936 | b | k | |a 44.90 |j Neurologie |q VZ |
951 | |a AR | ||
952 | |d 126 |j 2021 |h 0 |
author_variant |
z c k zc zck |
---|---|
matchkey_str |
koudenoukpozinsoucosmeodountanolaniranha:2021----:snslognznmpadahnlannmdltassmlucomntsrcueneainohscceiav |
hierarchy_sort_str |
2021 |
bklnumber |
77.50 44.90 |
publishDate |
2021 |
allfields |
10.1016/j.ecolind.2021.107706 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001482.pica (DE-627)ELV053843320 (ELSEVIER)S1470-160X(21)00371-X DE-627 ger DE-627 rakwb eng 150 610 VZ BIODIV DE-30 fid 77.50 bkl 44.90 bkl Koudenoukpo, Zinsou Cosme verfasserin aut Using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a West Africa river–estuary system 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Mollusc community ecology analysis using SOM and machine learning models. • SOM in conjunction with IndVal, LDA and RF models are effective tools. • Mollusc assemblages are structured by physicochemical variables related to the river–estuary continuum. • Progressively downstream ward habitats faced to increasing anthropogenic stress. • Our approach can likely be applied for a variety of freshwater systems. Mollusc community Elsevier Tropical river systems Elsevier Freshwater biodiversity Elsevier Ecology Elsevier Modelling Elsevier Artificial neural network Elsevier Odountan, Olaniran Hamed oth Agboho, Prudenciène Ablawa oth Dalu, Tatenda oth Van Bocxlaer, Bert oth Janssens de Bistoven, Luc oth Chikou, Antoine oth Backeljau, Thierry oth Enthalten in Elsevier Science Keyan, Dharani ELSEVIER The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms 2019 integrating monitoring, assessment and management Amsterdam [u.a.] (DE-627)ELV003175588 volume:126 year:2021 pages:0 https://doi.org/10.1016/j.ecolind.2021.107706 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 77.50 Psychophysiologie VZ 44.90 Neurologie VZ AR 126 2021 0 |
spelling |
10.1016/j.ecolind.2021.107706 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001482.pica (DE-627)ELV053843320 (ELSEVIER)S1470-160X(21)00371-X DE-627 ger DE-627 rakwb eng 150 610 VZ BIODIV DE-30 fid 77.50 bkl 44.90 bkl Koudenoukpo, Zinsou Cosme verfasserin aut Using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a West Africa river–estuary system 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Mollusc community ecology analysis using SOM and machine learning models. • SOM in conjunction with IndVal, LDA and RF models are effective tools. • Mollusc assemblages are structured by physicochemical variables related to the river–estuary continuum. • Progressively downstream ward habitats faced to increasing anthropogenic stress. • Our approach can likely be applied for a variety of freshwater systems. Mollusc community Elsevier Tropical river systems Elsevier Freshwater biodiversity Elsevier Ecology Elsevier Modelling Elsevier Artificial neural network Elsevier Odountan, Olaniran Hamed oth Agboho, Prudenciène Ablawa oth Dalu, Tatenda oth Van Bocxlaer, Bert oth Janssens de Bistoven, Luc oth Chikou, Antoine oth Backeljau, Thierry oth Enthalten in Elsevier Science Keyan, Dharani ELSEVIER The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms 2019 integrating monitoring, assessment and management Amsterdam [u.a.] (DE-627)ELV003175588 volume:126 year:2021 pages:0 https://doi.org/10.1016/j.ecolind.2021.107706 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 77.50 Psychophysiologie VZ 44.90 Neurologie VZ AR 126 2021 0 |
allfields_unstemmed |
10.1016/j.ecolind.2021.107706 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001482.pica (DE-627)ELV053843320 (ELSEVIER)S1470-160X(21)00371-X DE-627 ger DE-627 rakwb eng 150 610 VZ BIODIV DE-30 fid 77.50 bkl 44.90 bkl Koudenoukpo, Zinsou Cosme verfasserin aut Using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a West Africa river–estuary system 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Mollusc community ecology analysis using SOM and machine learning models. • SOM in conjunction with IndVal, LDA and RF models are effective tools. • Mollusc assemblages are structured by physicochemical variables related to the river–estuary continuum. • Progressively downstream ward habitats faced to increasing anthropogenic stress. • Our approach can likely be applied for a variety of freshwater systems. Mollusc community Elsevier Tropical river systems Elsevier Freshwater biodiversity Elsevier Ecology Elsevier Modelling Elsevier Artificial neural network Elsevier Odountan, Olaniran Hamed oth Agboho, Prudenciène Ablawa oth Dalu, Tatenda oth Van Bocxlaer, Bert oth Janssens de Bistoven, Luc oth Chikou, Antoine oth Backeljau, Thierry oth Enthalten in Elsevier Science Keyan, Dharani ELSEVIER The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms 2019 integrating monitoring, assessment and management Amsterdam [u.a.] (DE-627)ELV003175588 volume:126 year:2021 pages:0 https://doi.org/10.1016/j.ecolind.2021.107706 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 77.50 Psychophysiologie VZ 44.90 Neurologie VZ AR 126 2021 0 |
allfieldsGer |
10.1016/j.ecolind.2021.107706 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001482.pica (DE-627)ELV053843320 (ELSEVIER)S1470-160X(21)00371-X DE-627 ger DE-627 rakwb eng 150 610 VZ BIODIV DE-30 fid 77.50 bkl 44.90 bkl Koudenoukpo, Zinsou Cosme verfasserin aut Using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a West Africa river–estuary system 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Mollusc community ecology analysis using SOM and machine learning models. • SOM in conjunction with IndVal, LDA and RF models are effective tools. • Mollusc assemblages are structured by physicochemical variables related to the river–estuary continuum. • Progressively downstream ward habitats faced to increasing anthropogenic stress. • Our approach can likely be applied for a variety of freshwater systems. Mollusc community Elsevier Tropical river systems Elsevier Freshwater biodiversity Elsevier Ecology Elsevier Modelling Elsevier Artificial neural network Elsevier Odountan, Olaniran Hamed oth Agboho, Prudenciène Ablawa oth Dalu, Tatenda oth Van Bocxlaer, Bert oth Janssens de Bistoven, Luc oth Chikou, Antoine oth Backeljau, Thierry oth Enthalten in Elsevier Science Keyan, Dharani ELSEVIER The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms 2019 integrating monitoring, assessment and management Amsterdam [u.a.] (DE-627)ELV003175588 volume:126 year:2021 pages:0 https://doi.org/10.1016/j.ecolind.2021.107706 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 77.50 Psychophysiologie VZ 44.90 Neurologie VZ AR 126 2021 0 |
allfieldsSound |
10.1016/j.ecolind.2021.107706 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001482.pica (DE-627)ELV053843320 (ELSEVIER)S1470-160X(21)00371-X DE-627 ger DE-627 rakwb eng 150 610 VZ BIODIV DE-30 fid 77.50 bkl 44.90 bkl Koudenoukpo, Zinsou Cosme verfasserin aut Using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a West Africa river–estuary system 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Mollusc community ecology analysis using SOM and machine learning models. • SOM in conjunction with IndVal, LDA and RF models are effective tools. • Mollusc assemblages are structured by physicochemical variables related to the river–estuary continuum. • Progressively downstream ward habitats faced to increasing anthropogenic stress. • Our approach can likely be applied for a variety of freshwater systems. Mollusc community Elsevier Tropical river systems Elsevier Freshwater biodiversity Elsevier Ecology Elsevier Modelling Elsevier Artificial neural network Elsevier Odountan, Olaniran Hamed oth Agboho, Prudenciène Ablawa oth Dalu, Tatenda oth Van Bocxlaer, Bert oth Janssens de Bistoven, Luc oth Chikou, Antoine oth Backeljau, Thierry oth Enthalten in Elsevier Science Keyan, Dharani ELSEVIER The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms 2019 integrating monitoring, assessment and management Amsterdam [u.a.] (DE-627)ELV003175588 volume:126 year:2021 pages:0 https://doi.org/10.1016/j.ecolind.2021.107706 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 77.50 Psychophysiologie VZ 44.90 Neurologie VZ AR 126 2021 0 |
language |
English |
source |
Enthalten in The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms Amsterdam [u.a.] volume:126 year:2021 pages:0 |
sourceStr |
Enthalten in The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms Amsterdam [u.a.] volume:126 year:2021 pages:0 |
format_phy_str_mv |
Article |
bklname |
Psychophysiologie Neurologie |
institution |
findex.gbv.de |
topic_facet |
Mollusc community Tropical river systems Freshwater biodiversity Ecology Modelling Artificial neural network |
dewey-raw |
150 |
isfreeaccess_bool |
false |
container_title |
The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms |
authorswithroles_txt_mv |
Koudenoukpo, Zinsou Cosme @@aut@@ Odountan, Olaniran Hamed @@oth@@ Agboho, Prudenciène Ablawa @@oth@@ Dalu, Tatenda @@oth@@ Van Bocxlaer, Bert @@oth@@ Janssens de Bistoven, Luc @@oth@@ Chikou, Antoine @@oth@@ Backeljau, Thierry @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV003175588 |
dewey-sort |
3150 |
id |
ELV053843320 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053843320</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624202410.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2021.107706</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001482.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053843320</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1470-160X(21)00371-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">150</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">77.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koudenoukpo, Zinsou Cosme</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a West Africa river–estuary system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Mollusc community ecology analysis using SOM and machine learning models. • SOM in conjunction with IndVal, LDA and RF models are effective tools. • Mollusc assemblages are structured by physicochemical variables related to the river–estuary continuum. • Progressively downstream ward habitats faced to increasing anthropogenic stress. • Our approach can likely be applied for a variety of freshwater systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mollusc community</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tropical river systems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Freshwater biodiversity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ecology</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modelling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial neural network</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Odountan, Olaniran Hamed</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agboho, Prudenciène Ablawa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dalu, Tatenda</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van Bocxlaer, Bert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Janssens de Bistoven, Luc</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chikou, Antoine</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Backeljau, Thierry</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Keyan, Dharani ELSEVIER</subfield><subfield code="t">The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms</subfield><subfield code="d">2019</subfield><subfield code="d">integrating monitoring, assessment and management</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003175588</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:126</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecolind.2021.107706</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">77.50</subfield><subfield code="j">Psychophysiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">126</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Koudenoukpo, Zinsou Cosme |
spellingShingle |
Koudenoukpo, Zinsou Cosme ddc 150 fid BIODIV bkl 77.50 bkl 44.90 Elsevier Mollusc community Elsevier Tropical river systems Elsevier Freshwater biodiversity Elsevier Ecology Elsevier Modelling Elsevier Artificial neural network Using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a West Africa river–estuary system |
authorStr |
Koudenoukpo, Zinsou Cosme |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003175588 |
format |
electronic Article |
dewey-ones |
150 - Psychology 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
150 610 VZ BIODIV DE-30 fid 77.50 bkl 44.90 bkl Using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a West Africa river–estuary system Mollusc community Elsevier Tropical river systems Elsevier Freshwater biodiversity Elsevier Ecology Elsevier Modelling Elsevier Artificial neural network Elsevier |
topic |
ddc 150 fid BIODIV bkl 77.50 bkl 44.90 Elsevier Mollusc community Elsevier Tropical river systems Elsevier Freshwater biodiversity Elsevier Ecology Elsevier Modelling Elsevier Artificial neural network |
topic_unstemmed |
ddc 150 fid BIODIV bkl 77.50 bkl 44.90 Elsevier Mollusc community Elsevier Tropical river systems Elsevier Freshwater biodiversity Elsevier Ecology Elsevier Modelling Elsevier Artificial neural network |
topic_browse |
ddc 150 fid BIODIV bkl 77.50 bkl 44.90 Elsevier Mollusc community Elsevier Tropical river systems Elsevier Freshwater biodiversity Elsevier Ecology Elsevier Modelling Elsevier Artificial neural network |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
o h o oh oho p a a pa paa t d td b b v bb bbv d b l j dbl dblj a c ac t b tb |
hierarchy_parent_title |
The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms |
hierarchy_parent_id |
ELV003175588 |
dewey-tens |
150 - Psychology 610 - Medicine & health |
hierarchy_top_title |
The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003175588 |
title |
Using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a West Africa river–estuary system |
ctrlnum |
(DE-627)ELV053843320 (ELSEVIER)S1470-160X(21)00371-X |
title_full |
Using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a West Africa river–estuary system |
author_sort |
Koudenoukpo, Zinsou Cosme |
journal |
The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms |
journalStr |
The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
100 - Philosophy & psychology 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Koudenoukpo, Zinsou Cosme |
container_volume |
126 |
class |
150 610 VZ BIODIV DE-30 fid 77.50 bkl 44.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Koudenoukpo, Zinsou Cosme |
doi_str_mv |
10.1016/j.ecolind.2021.107706 |
dewey-full |
150 610 |
title_sort |
using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a west africa river–estuary system |
title_auth |
Using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a West Africa river–estuary system |
abstract |
• Mollusc community ecology analysis using SOM and machine learning models. • SOM in conjunction with IndVal, LDA and RF models are effective tools. • Mollusc assemblages are structured by physicochemical variables related to the river–estuary continuum. • Progressively downstream ward habitats faced to increasing anthropogenic stress. • Our approach can likely be applied for a variety of freshwater systems. |
abstractGer |
• Mollusc community ecology analysis using SOM and machine learning models. • SOM in conjunction with IndVal, LDA and RF models are effective tools. • Mollusc assemblages are structured by physicochemical variables related to the river–estuary continuum. • Progressively downstream ward habitats faced to increasing anthropogenic stress. • Our approach can likely be applied for a variety of freshwater systems. |
abstract_unstemmed |
• Mollusc community ecology analysis using SOM and machine learning models. • SOM in conjunction with IndVal, LDA and RF models are effective tools. • Mollusc assemblages are structured by physicochemical variables related to the river–estuary continuum. • Progressively downstream ward habitats faced to increasing anthropogenic stress. • Our approach can likely be applied for a variety of freshwater systems. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
title_short |
Using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a West Africa river–estuary system |
url |
https://doi.org/10.1016/j.ecolind.2021.107706 |
remote_bool |
true |
author2 |
Odountan, Olaniran Hamed Agboho, Prudenciène Ablawa Dalu, Tatenda Van Bocxlaer, Bert Janssens de Bistoven, Luc Chikou, Antoine Backeljau, Thierry |
author2Str |
Odountan, Olaniran Hamed Agboho, Prudenciène Ablawa Dalu, Tatenda Van Bocxlaer, Bert Janssens de Bistoven, Luc Chikou, Antoine Backeljau, Thierry |
ppnlink |
ELV003175588 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1016/j.ecolind.2021.107706 |
up_date |
2024-07-06T20:04:35.996Z |
_version_ |
1803861387898781696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053843320</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624202410.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2021.107706</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001482.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053843320</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1470-160X(21)00371-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">150</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">77.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koudenoukpo, Zinsou Cosme</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Using self–organizing maps and machine learning models to assess mollusc community structure in relation to physicochemical variables in a West Africa river–estuary system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Mollusc community ecology analysis using SOM and machine learning models. • SOM in conjunction with IndVal, LDA and RF models are effective tools. • Mollusc assemblages are structured by physicochemical variables related to the river–estuary continuum. • Progressively downstream ward habitats faced to increasing anthropogenic stress. • Our approach can likely be applied for a variety of freshwater systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mollusc community</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tropical river systems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Freshwater biodiversity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ecology</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modelling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial neural network</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Odountan, Olaniran Hamed</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agboho, Prudenciène Ablawa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dalu, Tatenda</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van Bocxlaer, Bert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Janssens de Bistoven, Luc</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chikou, Antoine</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Backeljau, Thierry</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Keyan, Dharani ELSEVIER</subfield><subfield code="t">The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms</subfield><subfield code="d">2019</subfield><subfield code="d">integrating monitoring, assessment and management</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003175588</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:126</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecolind.2021.107706</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">77.50</subfield><subfield code="j">Psychophysiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">126</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.400613 |