Faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points
There are two methods to predict the maximum power point (MPP) and the maximum efficiency point (MEP) of a thermoelectric generator: the Constant Temperature Difference method (CTD) and the Variable Temperature Difference method (VTD). These methods help engineers to determine the optimum load for M...
Ausführliche Beschreibung
Autor*in: |
Massaguer, Albert [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion - Solanki, Nayan ELSEVIER, 2017, the international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:226 ; year:2021 ; day:1 ; month:07 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.energy.2021.120248 |
---|
Katalog-ID: |
ELV053898125 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV053898125 | ||
003 | DE-627 | ||
005 | 20230624202850.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.energy.2021.120248 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001629.pica |
035 | |a (DE-627)ELV053898125 | ||
035 | |a (ELSEVIER)S0360-5442(21)00497-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 15,3 |2 ssgn | ||
084 | |a PHARM |q DE-84 |2 fid | ||
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Massaguer, Albert |e verfasserin |4 aut | |
245 | 1 | 0 | |a Faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a There are two methods to predict the maximum power point (MPP) and the maximum efficiency point (MEP) of a thermoelectric generator: the Constant Temperature Difference method (CTD) and the Variable Temperature Difference method (VTD). These methods help engineers to determine the optimum load for MPP or MEP of thermoelectric generators, without the need of doing a load resistance scan (LRS), and are of particular interest to reduce the time needed to simulate large-scale thermoelectric systems. | ||
650 | 7 | |a Load factor |2 Elsevier | |
650 | 7 | |a Optimum load resistance |2 Elsevier | |
650 | 7 | |a Maximum power point |2 Elsevier | |
650 | 7 | |a Matched load resistance |2 Elsevier | |
650 | 7 | |a Maximum efficiency point |2 Elsevier | |
650 | 7 | |a Thermoelectric generator |2 Elsevier | |
700 | 1 | |a Massaguer, Eduard |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Solanki, Nayan ELSEVIER |t Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |d 2017 |d the international journal |g Amsterdam [u.a.] |w (DE-627)ELV000529575 |
773 | 1 | 8 | |g volume:226 |g year:2021 |g day:1 |g month:07 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.energy.2021.120248 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-PHARM | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
936 | b | k | |a 44.40 |j Pharmazie |j Pharmazeutika |q VZ |
951 | |a AR | ||
952 | |d 226 |j 2021 |b 1 |c 0701 |h 0 |
author_variant |
a m am |
---|---|
matchkey_str |
massagueralbertmassaguereduard:2021----:atrnmracrtsmltosfhrolcrceeaoshogterdcinfhotmmodeitn |
hierarchy_sort_str |
2021 |
bklnumber |
44.40 |
publishDate |
2021 |
allfields |
10.1016/j.energy.2021.120248 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001629.pica (DE-627)ELV053898125 (ELSEVIER)S0360-5442(21)00497-7 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Massaguer, Albert verfasserin aut Faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier There are two methods to predict the maximum power point (MPP) and the maximum efficiency point (MEP) of a thermoelectric generator: the Constant Temperature Difference method (CTD) and the Variable Temperature Difference method (VTD). These methods help engineers to determine the optimum load for MPP or MEP of thermoelectric generators, without the need of doing a load resistance scan (LRS), and are of particular interest to reduce the time needed to simulate large-scale thermoelectric systems. Load factor Elsevier Optimum load resistance Elsevier Maximum power point Elsevier Matched load resistance Elsevier Maximum efficiency point Elsevier Thermoelectric generator Elsevier Massaguer, Eduard oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:226 year:2021 day:1 month:07 pages:0 https://doi.org/10.1016/j.energy.2021.120248 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 226 2021 1 0701 0 |
spelling |
10.1016/j.energy.2021.120248 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001629.pica (DE-627)ELV053898125 (ELSEVIER)S0360-5442(21)00497-7 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Massaguer, Albert verfasserin aut Faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier There are two methods to predict the maximum power point (MPP) and the maximum efficiency point (MEP) of a thermoelectric generator: the Constant Temperature Difference method (CTD) and the Variable Temperature Difference method (VTD). These methods help engineers to determine the optimum load for MPP or MEP of thermoelectric generators, without the need of doing a load resistance scan (LRS), and are of particular interest to reduce the time needed to simulate large-scale thermoelectric systems. Load factor Elsevier Optimum load resistance Elsevier Maximum power point Elsevier Matched load resistance Elsevier Maximum efficiency point Elsevier Thermoelectric generator Elsevier Massaguer, Eduard oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:226 year:2021 day:1 month:07 pages:0 https://doi.org/10.1016/j.energy.2021.120248 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 226 2021 1 0701 0 |
allfields_unstemmed |
10.1016/j.energy.2021.120248 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001629.pica (DE-627)ELV053898125 (ELSEVIER)S0360-5442(21)00497-7 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Massaguer, Albert verfasserin aut Faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier There are two methods to predict the maximum power point (MPP) and the maximum efficiency point (MEP) of a thermoelectric generator: the Constant Temperature Difference method (CTD) and the Variable Temperature Difference method (VTD). These methods help engineers to determine the optimum load for MPP or MEP of thermoelectric generators, without the need of doing a load resistance scan (LRS), and are of particular interest to reduce the time needed to simulate large-scale thermoelectric systems. Load factor Elsevier Optimum load resistance Elsevier Maximum power point Elsevier Matched load resistance Elsevier Maximum efficiency point Elsevier Thermoelectric generator Elsevier Massaguer, Eduard oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:226 year:2021 day:1 month:07 pages:0 https://doi.org/10.1016/j.energy.2021.120248 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 226 2021 1 0701 0 |
allfieldsGer |
10.1016/j.energy.2021.120248 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001629.pica (DE-627)ELV053898125 (ELSEVIER)S0360-5442(21)00497-7 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Massaguer, Albert verfasserin aut Faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier There are two methods to predict the maximum power point (MPP) and the maximum efficiency point (MEP) of a thermoelectric generator: the Constant Temperature Difference method (CTD) and the Variable Temperature Difference method (VTD). These methods help engineers to determine the optimum load for MPP or MEP of thermoelectric generators, without the need of doing a load resistance scan (LRS), and are of particular interest to reduce the time needed to simulate large-scale thermoelectric systems. Load factor Elsevier Optimum load resistance Elsevier Maximum power point Elsevier Matched load resistance Elsevier Maximum efficiency point Elsevier Thermoelectric generator Elsevier Massaguer, Eduard oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:226 year:2021 day:1 month:07 pages:0 https://doi.org/10.1016/j.energy.2021.120248 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 226 2021 1 0701 0 |
allfieldsSound |
10.1016/j.energy.2021.120248 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001629.pica (DE-627)ELV053898125 (ELSEVIER)S0360-5442(21)00497-7 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Massaguer, Albert verfasserin aut Faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier There are two methods to predict the maximum power point (MPP) and the maximum efficiency point (MEP) of a thermoelectric generator: the Constant Temperature Difference method (CTD) and the Variable Temperature Difference method (VTD). These methods help engineers to determine the optimum load for MPP or MEP of thermoelectric generators, without the need of doing a load resistance scan (LRS), and are of particular interest to reduce the time needed to simulate large-scale thermoelectric systems. Load factor Elsevier Optimum load resistance Elsevier Maximum power point Elsevier Matched load resistance Elsevier Maximum efficiency point Elsevier Thermoelectric generator Elsevier Massaguer, Eduard oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:226 year:2021 day:1 month:07 pages:0 https://doi.org/10.1016/j.energy.2021.120248 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 226 2021 1 0701 0 |
language |
English |
source |
Enthalten in Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion Amsterdam [u.a.] volume:226 year:2021 day:1 month:07 pages:0 |
sourceStr |
Enthalten in Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion Amsterdam [u.a.] volume:226 year:2021 day:1 month:07 pages:0 |
format_phy_str_mv |
Article |
bklname |
Pharmazie Pharmazeutika |
institution |
findex.gbv.de |
topic_facet |
Load factor Optimum load resistance Maximum power point Matched load resistance Maximum efficiency point Thermoelectric generator |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
authorswithroles_txt_mv |
Massaguer, Albert @@aut@@ Massaguer, Eduard @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV000529575 |
dewey-sort |
3610 |
id |
ELV053898125 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053898125</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624202850.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2021.120248</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001629.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053898125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(21)00497-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15,3</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Massaguer, Albert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There are two methods to predict the maximum power point (MPP) and the maximum efficiency point (MEP) of a thermoelectric generator: the Constant Temperature Difference method (CTD) and the Variable Temperature Difference method (VTD). These methods help engineers to determine the optimum load for MPP or MEP of thermoelectric generators, without the need of doing a load resistance scan (LRS), and are of particular interest to reduce the time needed to simulate large-scale thermoelectric systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Load factor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimum load resistance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Maximum power point</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matched load resistance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Maximum efficiency point</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermoelectric generator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Massaguer, Eduard</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Solanki, Nayan ELSEVIER</subfield><subfield code="t">Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion</subfield><subfield code="d">2017</subfield><subfield code="d">the international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000529575</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:226</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:1</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.energy.2021.120248</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">226</subfield><subfield code="j">2021</subfield><subfield code="b">1</subfield><subfield code="c">0701</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Massaguer, Albert |
spellingShingle |
Massaguer, Albert ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Load factor Elsevier Optimum load resistance Elsevier Maximum power point Elsevier Matched load resistance Elsevier Maximum efficiency point Elsevier Thermoelectric generator Faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points |
authorStr |
Massaguer, Albert |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000529575 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points Load factor Elsevier Optimum load resistance Elsevier Maximum power point Elsevier Matched load resistance Elsevier Maximum efficiency point Elsevier Thermoelectric generator Elsevier |
topic |
ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Load factor Elsevier Optimum load resistance Elsevier Maximum power point Elsevier Matched load resistance Elsevier Maximum efficiency point Elsevier Thermoelectric generator |
topic_unstemmed |
ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Load factor Elsevier Optimum load resistance Elsevier Maximum power point Elsevier Matched load resistance Elsevier Maximum efficiency point Elsevier Thermoelectric generator |
topic_browse |
ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Load factor Elsevier Optimum load resistance Elsevier Maximum power point Elsevier Matched load resistance Elsevier Maximum efficiency point Elsevier Thermoelectric generator |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
e m em |
hierarchy_parent_title |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
hierarchy_parent_id |
ELV000529575 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000529575 |
title |
Faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points |
ctrlnum |
(DE-627)ELV053898125 (ELSEVIER)S0360-5442(21)00497-7 |
title_full |
Faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points |
author_sort |
Massaguer, Albert |
journal |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
journalStr |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Massaguer, Albert |
container_volume |
226 |
class |
610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Massaguer, Albert |
doi_str_mv |
10.1016/j.energy.2021.120248 |
dewey-full |
610 |
title_sort |
faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points |
title_auth |
Faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points |
abstract |
There are two methods to predict the maximum power point (MPP) and the maximum efficiency point (MEP) of a thermoelectric generator: the Constant Temperature Difference method (CTD) and the Variable Temperature Difference method (VTD). These methods help engineers to determine the optimum load for MPP or MEP of thermoelectric generators, without the need of doing a load resistance scan (LRS), and are of particular interest to reduce the time needed to simulate large-scale thermoelectric systems. |
abstractGer |
There are two methods to predict the maximum power point (MPP) and the maximum efficiency point (MEP) of a thermoelectric generator: the Constant Temperature Difference method (CTD) and the Variable Temperature Difference method (VTD). These methods help engineers to determine the optimum load for MPP or MEP of thermoelectric generators, without the need of doing a load resistance scan (LRS), and are of particular interest to reduce the time needed to simulate large-scale thermoelectric systems. |
abstract_unstemmed |
There are two methods to predict the maximum power point (MPP) and the maximum efficiency point (MEP) of a thermoelectric generator: the Constant Temperature Difference method (CTD) and the Variable Temperature Difference method (VTD). These methods help engineers to determine the optimum load for MPP or MEP of thermoelectric generators, without the need of doing a load resistance scan (LRS), and are of particular interest to reduce the time needed to simulate large-scale thermoelectric systems. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA |
title_short |
Faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points |
url |
https://doi.org/10.1016/j.energy.2021.120248 |
remote_bool |
true |
author2 |
Massaguer, Eduard |
author2Str |
Massaguer, Eduard |
ppnlink |
ELV000529575 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.energy.2021.120248 |
up_date |
2024-07-06T20:13:10.785Z |
_version_ |
1803861927694172160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053898125</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624202850.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2021.120248</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001629.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053898125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(21)00497-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15,3</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Massaguer, Albert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There are two methods to predict the maximum power point (MPP) and the maximum efficiency point (MEP) of a thermoelectric generator: the Constant Temperature Difference method (CTD) and the Variable Temperature Difference method (VTD). These methods help engineers to determine the optimum load for MPP or MEP of thermoelectric generators, without the need of doing a load resistance scan (LRS), and are of particular interest to reduce the time needed to simulate large-scale thermoelectric systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Load factor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimum load resistance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Maximum power point</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matched load resistance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Maximum efficiency point</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermoelectric generator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Massaguer, Eduard</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Solanki, Nayan ELSEVIER</subfield><subfield code="t">Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion</subfield><subfield code="d">2017</subfield><subfield code="d">the international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000529575</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:226</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:1</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.energy.2021.120248</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">226</subfield><subfield code="j">2021</subfield><subfield code="b">1</subfield><subfield code="c">0701</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.402647 |