Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning
In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation effi...
Ausführliche Beschreibung
Autor*in: |
Jinquan, Guo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion - Solanki, Nayan ELSEVIER, 2017, the international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:226 ; year:2021 ; day:1 ; month:07 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.energy.2021.120440 |
---|
Katalog-ID: |
ELV053898834 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV053898834 | ||
003 | DE-627 | ||
005 | 20230626035441.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.energy.2021.120440 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001629.pica |
035 | |a (DE-627)ELV053898834 | ||
035 | |a (ELSEVIER)S0360-5442(21)00689-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 15,3 |2 ssgn | ||
084 | |a PHARM |q DE-84 |2 fid | ||
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Jinquan, Guo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning |
264 | 1 | |c 2021transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range. | ||
520 | |a In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range. | ||
650 | 7 | |a FCHEB |2 Elsevier | |
650 | 7 | |a MPC |2 Elsevier | |
650 | 7 | |a SUMO |2 Elsevier | |
650 | 7 | |a DP |2 Elsevier | |
650 | 7 | |a Energy management |2 Elsevier | |
650 | 7 | |a Intersection speed planning |2 Elsevier | |
700 | 1 | |a Hongwen, He |4 oth | |
700 | 1 | |a Jianwei, Li |4 oth | |
700 | 1 | |a Qingwu, Liu |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Solanki, Nayan ELSEVIER |t Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |d 2017 |d the international journal |g Amsterdam [u.a.] |w (DE-627)ELV000529575 |
773 | 1 | 8 | |g volume:226 |g year:2021 |g day:1 |g month:07 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.energy.2021.120440 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-PHARM | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
936 | b | k | |a 44.40 |j Pharmazie |j Pharmazeutika |q VZ |
951 | |a AR | ||
952 | |d 226 |j 2021 |b 1 |c 0701 |h 0 |
author_variant |
g j gj |
---|---|
matchkey_str |
jinquanguohongwenhejianweiliqingwuliu:2021----:elienryaaeetfulelyrdlcrcuefeclegnsred |
hierarchy_sort_str |
2021transfer abstract |
bklnumber |
44.40 |
publishDate |
2021 |
allfields |
10.1016/j.energy.2021.120440 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001629.pica (DE-627)ELV053898834 (ELSEVIER)S0360-5442(21)00689-7 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Jinquan, Guo verfasserin aut Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range. In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range. FCHEB Elsevier MPC Elsevier SUMO Elsevier DP Elsevier Energy management Elsevier Intersection speed planning Elsevier Hongwen, He oth Jianwei, Li oth Qingwu, Liu oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:226 year:2021 day:1 month:07 pages:0 https://doi.org/10.1016/j.energy.2021.120440 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 226 2021 1 0701 0 |
spelling |
10.1016/j.energy.2021.120440 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001629.pica (DE-627)ELV053898834 (ELSEVIER)S0360-5442(21)00689-7 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Jinquan, Guo verfasserin aut Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range. In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range. FCHEB Elsevier MPC Elsevier SUMO Elsevier DP Elsevier Energy management Elsevier Intersection speed planning Elsevier Hongwen, He oth Jianwei, Li oth Qingwu, Liu oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:226 year:2021 day:1 month:07 pages:0 https://doi.org/10.1016/j.energy.2021.120440 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 226 2021 1 0701 0 |
allfields_unstemmed |
10.1016/j.energy.2021.120440 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001629.pica (DE-627)ELV053898834 (ELSEVIER)S0360-5442(21)00689-7 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Jinquan, Guo verfasserin aut Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range. In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range. FCHEB Elsevier MPC Elsevier SUMO Elsevier DP Elsevier Energy management Elsevier Intersection speed planning Elsevier Hongwen, He oth Jianwei, Li oth Qingwu, Liu oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:226 year:2021 day:1 month:07 pages:0 https://doi.org/10.1016/j.energy.2021.120440 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 226 2021 1 0701 0 |
allfieldsGer |
10.1016/j.energy.2021.120440 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001629.pica (DE-627)ELV053898834 (ELSEVIER)S0360-5442(21)00689-7 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Jinquan, Guo verfasserin aut Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range. In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range. FCHEB Elsevier MPC Elsevier SUMO Elsevier DP Elsevier Energy management Elsevier Intersection speed planning Elsevier Hongwen, He oth Jianwei, Li oth Qingwu, Liu oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:226 year:2021 day:1 month:07 pages:0 https://doi.org/10.1016/j.energy.2021.120440 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 226 2021 1 0701 0 |
allfieldsSound |
10.1016/j.energy.2021.120440 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001629.pica (DE-627)ELV053898834 (ELSEVIER)S0360-5442(21)00689-7 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Jinquan, Guo verfasserin aut Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range. In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range. FCHEB Elsevier MPC Elsevier SUMO Elsevier DP Elsevier Energy management Elsevier Intersection speed planning Elsevier Hongwen, He oth Jianwei, Li oth Qingwu, Liu oth Enthalten in Elsevier Science Solanki, Nayan ELSEVIER Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion 2017 the international journal Amsterdam [u.a.] (DE-627)ELV000529575 volume:226 year:2021 day:1 month:07 pages:0 https://doi.org/10.1016/j.energy.2021.120440 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 226 2021 1 0701 0 |
language |
English |
source |
Enthalten in Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion Amsterdam [u.a.] volume:226 year:2021 day:1 month:07 pages:0 |
sourceStr |
Enthalten in Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion Amsterdam [u.a.] volume:226 year:2021 day:1 month:07 pages:0 |
format_phy_str_mv |
Article |
bklname |
Pharmazie Pharmazeutika |
institution |
findex.gbv.de |
topic_facet |
FCHEB MPC SUMO DP Energy management Intersection speed planning |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
authorswithroles_txt_mv |
Jinquan, Guo @@aut@@ Hongwen, He @@oth@@ Jianwei, Li @@oth@@ Qingwu, Liu @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV000529575 |
dewey-sort |
3610 |
id |
ELV053898834 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053898834</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626035441.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2021.120440</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001629.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053898834</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(21)00689-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15,3</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jinquan, Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FCHEB</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MPC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SUMO</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DP</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Energy management</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Intersection speed planning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hongwen, He</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jianwei, Li</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qingwu, Liu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Solanki, Nayan ELSEVIER</subfield><subfield code="t">Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion</subfield><subfield code="d">2017</subfield><subfield code="d">the international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000529575</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:226</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:1</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.energy.2021.120440</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">226</subfield><subfield code="j">2021</subfield><subfield code="b">1</subfield><subfield code="c">0701</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Jinquan, Guo |
spellingShingle |
Jinquan, Guo ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier FCHEB Elsevier MPC Elsevier SUMO Elsevier DP Elsevier Energy management Elsevier Intersection speed planning Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning |
authorStr |
Jinquan, Guo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000529575 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning FCHEB Elsevier MPC Elsevier SUMO Elsevier DP Elsevier Energy management Elsevier Intersection speed planning Elsevier |
topic |
ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier FCHEB Elsevier MPC Elsevier SUMO Elsevier DP Elsevier Energy management Elsevier Intersection speed planning |
topic_unstemmed |
ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier FCHEB Elsevier MPC Elsevier SUMO Elsevier DP Elsevier Energy management Elsevier Intersection speed planning |
topic_browse |
ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier FCHEB Elsevier MPC Elsevier SUMO Elsevier DP Elsevier Energy management Elsevier Intersection speed planning |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h h hh l j lj l q lq |
hierarchy_parent_title |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
hierarchy_parent_id |
ELV000529575 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000529575 |
title |
Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning |
ctrlnum |
(DE-627)ELV053898834 (ELSEVIER)S0360-5442(21)00689-7 |
title_full |
Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning |
author_sort |
Jinquan, Guo |
journal |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
journalStr |
Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Jinquan, Guo |
container_volume |
226 |
class |
610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Jinquan, Guo |
doi_str_mv |
10.1016/j.energy.2021.120440 |
dewey-full |
610 |
title_sort |
real-time energy management of fuel cell hybrid electric buses: fuel cell engines friendly intersection speed planning |
title_auth |
Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning |
abstract |
In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range. |
abstractGer |
In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range. |
abstract_unstemmed |
In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA |
title_short |
Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning |
url |
https://doi.org/10.1016/j.energy.2021.120440 |
remote_bool |
true |
author2 |
Hongwen, He Jianwei, Li Qingwu, Liu |
author2Str |
Hongwen, He Jianwei, Li Qingwu, Liu |
ppnlink |
ELV000529575 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.energy.2021.120440 |
up_date |
2024-07-06T20:13:20.027Z |
_version_ |
1803861937385111552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053898834</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626035441.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2021.120440</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001629.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053898834</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(21)00689-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15,3</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jinquan, Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a novel fuel cell engines friendly real-time energy management is proposed, which considers the intersection speed planning to reduce frequent load change conditions in the process of driving. The main advantage of this energy management is that it can improve road transportation efficiency, promote the goal of minimum hydrogen consumption and extend the service life of the fuel cell engines. For the intersection speed planning method, the information of the vehicle in front of the driving route and the traffic signal light states are considered based on dynamic programming (DP). With the intersection speed planning, the corresponding control variable is applied for the model predictive control (MPC) based energy management when the bus is 100m away from the traffic light. The simulation results show that the equivalent hydrogen saving rate can improve by approximately 3.04% and reduce 3.4% idle working conditions compared with the MPC based without intersection speed planning energy management. The hardware in the loop test show that the vehicle speed can follow the target speed, and the equivalent hydrogen consumption error is within 2.5%, which meets the allowable error range.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FCHEB</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MPC</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SUMO</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DP</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Energy management</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Intersection speed planning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hongwen, He</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jianwei, Li</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qingwu, Liu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Solanki, Nayan ELSEVIER</subfield><subfield code="t">Rheological analysis of itraconazole-polymer mixtures to determine optimal melt extrusion temperature for development of amorphous solid dispersion</subfield><subfield code="d">2017</subfield><subfield code="d">the international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000529575</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:226</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:1</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.energy.2021.120440</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">226</subfield><subfield code="j">2021</subfield><subfield code="b">1</subfield><subfield code="c">0701</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.402916 |