P300 event-related potential detection using one-dimensional convolutional capsule networks
• A new method to P300 ERP detection called 1D-CapsNet. • The improvement of the convolution dimension allows better detection of P300 ERP. • Two classifiers based on 1D-CapsNet are proposed to better transform BCI. • The performance of 1D-CapsNet is better than other state-of-the-art algorithms....
Ausführliche Beschreibung
Autor*in: |
Liu, Xiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Do denture processing techniques affect the mechanical properties of denture teeth? - Clements, Jody L. ELSEVIER, 2017, an international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:174 ; year:2021 ; day:15 ; month:07 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.eswa.2021.114701 |
---|
Katalog-ID: |
ELV053981995 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV053981995 | ||
003 | DE-627 | ||
005 | 20230624203545.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.eswa.2021.114701 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001576.pica |
035 | |a (DE-627)ELV053981995 | ||
035 | |a (ELSEVIER)S0957-4174(21)00142-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.96 |2 bkl | ||
100 | 1 | |a Liu, Xiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a P300 event-related potential detection using one-dimensional convolutional capsule networks |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • A new method to P300 ERP detection called 1D-CapsNet. • The improvement of the convolution dimension allows better detection of P300 ERP. • Two classifiers based on 1D-CapsNet are proposed to better transform BCI. • The performance of 1D-CapsNet is better than other state-of-the-art algorithms. | ||
650 | 7 | |a Brain-computer interface |2 Elsevier | |
650 | 7 | |a Ergonomics |2 Elsevier | |
650 | 7 | |a Capsule network |2 Elsevier | |
650 | 7 | |a EEG classification |2 Elsevier | |
650 | 7 | |a Features extraction |2 Elsevier | |
700 | 1 | |a Xie, Qingsheng |4 oth | |
700 | 1 | |a Lv, Jian |4 oth | |
700 | 1 | |a Huang, Haisong |4 oth | |
700 | 1 | |a Wang, Weixing |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Clements, Jody L. ELSEVIER |t Do denture processing techniques affect the mechanical properties of denture teeth? |d 2017 |d an international journal |g Amsterdam [u.a.] |w (DE-627)ELV000222070 |
773 | 1 | 8 | |g volume:174 |g year:2021 |g day:15 |g month:07 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.eswa.2021.114701 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.96 |j Zahnmedizin |q VZ |
951 | |a AR | ||
952 | |d 174 |j 2021 |b 15 |c 0715 |h 0 |
author_variant |
x l xl |
---|---|
matchkey_str |
liuxiangxieqingshenglvjianhuanghaisongwa:2021----:30vnrltdoetadtcinsnoeiesoacnou |
hierarchy_sort_str |
2021 |
bklnumber |
44.96 |
publishDate |
2021 |
allfields |
10.1016/j.eswa.2021.114701 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001576.pica (DE-627)ELV053981995 (ELSEVIER)S0957-4174(21)00142-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Liu, Xiang verfasserin aut P300 event-related potential detection using one-dimensional convolutional capsule networks 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A new method to P300 ERP detection called 1D-CapsNet. • The improvement of the convolution dimension allows better detection of P300 ERP. • Two classifiers based on 1D-CapsNet are proposed to better transform BCI. • The performance of 1D-CapsNet is better than other state-of-the-art algorithms. Brain-computer interface Elsevier Ergonomics Elsevier Capsule network Elsevier EEG classification Elsevier Features extraction Elsevier Xie, Qingsheng oth Lv, Jian oth Huang, Haisong oth Wang, Weixing oth Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:174 year:2021 day:15 month:07 pages:0 https://doi.org/10.1016/j.eswa.2021.114701 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 174 2021 15 0715 0 |
spelling |
10.1016/j.eswa.2021.114701 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001576.pica (DE-627)ELV053981995 (ELSEVIER)S0957-4174(21)00142-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Liu, Xiang verfasserin aut P300 event-related potential detection using one-dimensional convolutional capsule networks 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A new method to P300 ERP detection called 1D-CapsNet. • The improvement of the convolution dimension allows better detection of P300 ERP. • Two classifiers based on 1D-CapsNet are proposed to better transform BCI. • The performance of 1D-CapsNet is better than other state-of-the-art algorithms. Brain-computer interface Elsevier Ergonomics Elsevier Capsule network Elsevier EEG classification Elsevier Features extraction Elsevier Xie, Qingsheng oth Lv, Jian oth Huang, Haisong oth Wang, Weixing oth Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:174 year:2021 day:15 month:07 pages:0 https://doi.org/10.1016/j.eswa.2021.114701 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 174 2021 15 0715 0 |
allfields_unstemmed |
10.1016/j.eswa.2021.114701 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001576.pica (DE-627)ELV053981995 (ELSEVIER)S0957-4174(21)00142-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Liu, Xiang verfasserin aut P300 event-related potential detection using one-dimensional convolutional capsule networks 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A new method to P300 ERP detection called 1D-CapsNet. • The improvement of the convolution dimension allows better detection of P300 ERP. • Two classifiers based on 1D-CapsNet are proposed to better transform BCI. • The performance of 1D-CapsNet is better than other state-of-the-art algorithms. Brain-computer interface Elsevier Ergonomics Elsevier Capsule network Elsevier EEG classification Elsevier Features extraction Elsevier Xie, Qingsheng oth Lv, Jian oth Huang, Haisong oth Wang, Weixing oth Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:174 year:2021 day:15 month:07 pages:0 https://doi.org/10.1016/j.eswa.2021.114701 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 174 2021 15 0715 0 |
allfieldsGer |
10.1016/j.eswa.2021.114701 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001576.pica (DE-627)ELV053981995 (ELSEVIER)S0957-4174(21)00142-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Liu, Xiang verfasserin aut P300 event-related potential detection using one-dimensional convolutional capsule networks 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A new method to P300 ERP detection called 1D-CapsNet. • The improvement of the convolution dimension allows better detection of P300 ERP. • Two classifiers based on 1D-CapsNet are proposed to better transform BCI. • The performance of 1D-CapsNet is better than other state-of-the-art algorithms. Brain-computer interface Elsevier Ergonomics Elsevier Capsule network Elsevier EEG classification Elsevier Features extraction Elsevier Xie, Qingsheng oth Lv, Jian oth Huang, Haisong oth Wang, Weixing oth Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:174 year:2021 day:15 month:07 pages:0 https://doi.org/10.1016/j.eswa.2021.114701 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 174 2021 15 0715 0 |
allfieldsSound |
10.1016/j.eswa.2021.114701 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001576.pica (DE-627)ELV053981995 (ELSEVIER)S0957-4174(21)00142-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Liu, Xiang verfasserin aut P300 event-related potential detection using one-dimensional convolutional capsule networks 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A new method to P300 ERP detection called 1D-CapsNet. • The improvement of the convolution dimension allows better detection of P300 ERP. • Two classifiers based on 1D-CapsNet are proposed to better transform BCI. • The performance of 1D-CapsNet is better than other state-of-the-art algorithms. Brain-computer interface Elsevier Ergonomics Elsevier Capsule network Elsevier EEG classification Elsevier Features extraction Elsevier Xie, Qingsheng oth Lv, Jian oth Huang, Haisong oth Wang, Weixing oth Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:174 year:2021 day:15 month:07 pages:0 https://doi.org/10.1016/j.eswa.2021.114701 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 174 2021 15 0715 0 |
language |
English |
source |
Enthalten in Do denture processing techniques affect the mechanical properties of denture teeth? Amsterdam [u.a.] volume:174 year:2021 day:15 month:07 pages:0 |
sourceStr |
Enthalten in Do denture processing techniques affect the mechanical properties of denture teeth? Amsterdam [u.a.] volume:174 year:2021 day:15 month:07 pages:0 |
format_phy_str_mv |
Article |
bklname |
Zahnmedizin |
institution |
findex.gbv.de |
topic_facet |
Brain-computer interface Ergonomics Capsule network EEG classification Features extraction |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Do denture processing techniques affect the mechanical properties of denture teeth? |
authorswithroles_txt_mv |
Liu, Xiang @@aut@@ Xie, Qingsheng @@oth@@ Lv, Jian @@oth@@ Huang, Haisong @@oth@@ Wang, Weixing @@oth@@ |
publishDateDaySort_date |
2021-01-15T00:00:00Z |
hierarchy_top_id |
ELV000222070 |
dewey-sort |
3610 |
id |
ELV053981995 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053981995</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624203545.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2021.114701</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001576.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053981995</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(21)00142-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.96</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Xiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">P300 event-related potential detection using one-dimensional convolutional capsule networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• A new method to P300 ERP detection called 1D-CapsNet. • The improvement of the convolution dimension allows better detection of P300 ERP. • Two classifiers based on 1D-CapsNet are proposed to better transform BCI. • The performance of 1D-CapsNet is better than other state-of-the-art algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Brain-computer interface</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ergonomics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Capsule network</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">EEG classification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Features extraction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Qingsheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, Jian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Haisong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Weixing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Clements, Jody L. ELSEVIER</subfield><subfield code="t">Do denture processing techniques affect the mechanical properties of denture teeth?</subfield><subfield code="d">2017</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000222070</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:174</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.eswa.2021.114701</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.96</subfield><subfield code="j">Zahnmedizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">174</subfield><subfield code="j">2021</subfield><subfield code="b">15</subfield><subfield code="c">0715</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Liu, Xiang |
spellingShingle |
Liu, Xiang ddc 610 bkl 44.96 Elsevier Brain-computer interface Elsevier Ergonomics Elsevier Capsule network Elsevier EEG classification Elsevier Features extraction P300 event-related potential detection using one-dimensional convolutional capsule networks |
authorStr |
Liu, Xiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000222070 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.96 bkl P300 event-related potential detection using one-dimensional convolutional capsule networks Brain-computer interface Elsevier Ergonomics Elsevier Capsule network Elsevier EEG classification Elsevier Features extraction Elsevier |
topic |
ddc 610 bkl 44.96 Elsevier Brain-computer interface Elsevier Ergonomics Elsevier Capsule network Elsevier EEG classification Elsevier Features extraction |
topic_unstemmed |
ddc 610 bkl 44.96 Elsevier Brain-computer interface Elsevier Ergonomics Elsevier Capsule network Elsevier EEG classification Elsevier Features extraction |
topic_browse |
ddc 610 bkl 44.96 Elsevier Brain-computer interface Elsevier Ergonomics Elsevier Capsule network Elsevier EEG classification Elsevier Features extraction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
q x qx j l jl h h hh w w ww |
hierarchy_parent_title |
Do denture processing techniques affect the mechanical properties of denture teeth? |
hierarchy_parent_id |
ELV000222070 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Do denture processing techniques affect the mechanical properties of denture teeth? |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000222070 |
title |
P300 event-related potential detection using one-dimensional convolutional capsule networks |
ctrlnum |
(DE-627)ELV053981995 (ELSEVIER)S0957-4174(21)00142-1 |
title_full |
P300 event-related potential detection using one-dimensional convolutional capsule networks |
author_sort |
Liu, Xiang |
journal |
Do denture processing techniques affect the mechanical properties of denture teeth? |
journalStr |
Do denture processing techniques affect the mechanical properties of denture teeth? |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Liu, Xiang |
container_volume |
174 |
class |
610 VZ 44.96 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Xiang |
doi_str_mv |
10.1016/j.eswa.2021.114701 |
dewey-full |
610 |
title_sort |
p300 event-related potential detection using one-dimensional convolutional capsule networks |
title_auth |
P300 event-related potential detection using one-dimensional convolutional capsule networks |
abstract |
• A new method to P300 ERP detection called 1D-CapsNet. • The improvement of the convolution dimension allows better detection of P300 ERP. • Two classifiers based on 1D-CapsNet are proposed to better transform BCI. • The performance of 1D-CapsNet is better than other state-of-the-art algorithms. |
abstractGer |
• A new method to P300 ERP detection called 1D-CapsNet. • The improvement of the convolution dimension allows better detection of P300 ERP. • Two classifiers based on 1D-CapsNet are proposed to better transform BCI. • The performance of 1D-CapsNet is better than other state-of-the-art algorithms. |
abstract_unstemmed |
• A new method to P300 ERP detection called 1D-CapsNet. • The improvement of the convolution dimension allows better detection of P300 ERP. • Two classifiers based on 1D-CapsNet are proposed to better transform BCI. • The performance of 1D-CapsNet is better than other state-of-the-art algorithms. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
P300 event-related potential detection using one-dimensional convolutional capsule networks |
url |
https://doi.org/10.1016/j.eswa.2021.114701 |
remote_bool |
true |
author2 |
Xie, Qingsheng Lv, Jian Huang, Haisong Wang, Weixing |
author2Str |
Xie, Qingsheng Lv, Jian Huang, Haisong Wang, Weixing |
ppnlink |
ELV000222070 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.eswa.2021.114701 |
up_date |
2024-07-06T20:26:44.430Z |
_version_ |
1803862780864888832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV053981995</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624203545.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2021.114701</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001576.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV053981995</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(21)00142-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.96</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Xiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">P300 event-related potential detection using one-dimensional convolutional capsule networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• A new method to P300 ERP detection called 1D-CapsNet. • The improvement of the convolution dimension allows better detection of P300 ERP. • Two classifiers based on 1D-CapsNet are proposed to better transform BCI. • The performance of 1D-CapsNet is better than other state-of-the-art algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Brain-computer interface</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ergonomics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Capsule network</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">EEG classification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Features extraction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Qingsheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, Jian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Haisong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Weixing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Clements, Jody L. ELSEVIER</subfield><subfield code="t">Do denture processing techniques affect the mechanical properties of denture teeth?</subfield><subfield code="d">2017</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000222070</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:174</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.eswa.2021.114701</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.96</subfield><subfield code="j">Zahnmedizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">174</subfield><subfield code="j">2021</subfield><subfield code="b">15</subfield><subfield code="c">0715</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.402231 |