Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio)
Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, an...
Ausführliche Beschreibung
Autor*in: |
Wei, Yimu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading - Li, Zhaochao ELSEVIER, 2019, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:280 ; year:2021 ; day:1 ; month:07 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.envpol.2021.116894 |
---|
Katalog-ID: |
ELV054125480 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV054125480 | ||
003 | DE-627 | ||
005 | 20230626035721.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.envpol.2021.116894 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001401.pica |
035 | |a (DE-627)ELV054125480 | ||
035 | |a (ELSEVIER)S0269-7491(21)00476-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.31 |2 bkl | ||
084 | |a 56.11 |2 bkl | ||
100 | 1 | |a Wei, Yimu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio) |
264 | 1 | |c 2021transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms. | ||
520 | |a Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms. | ||
650 | 7 | |a Bioaccumulation |2 Elsevier | |
650 | 7 | |a Toxicity |2 Elsevier | |
650 | 7 | |a Pyriproxyfen |2 Elsevier | |
650 | 7 | |a Zebrafish |2 Elsevier | |
650 | 7 | |a Metabolism |2 Elsevier | |
700 | 1 | |a Cui, Jingna |4 oth | |
700 | 1 | |a Zhai, Wangjing |4 oth | |
700 | 1 | |a Liu, Xueke |4 oth | |
700 | 1 | |a Zhou, Zhiqiang |4 oth | |
700 | 1 | |a Wang, Peng |4 oth | |
700 | 1 | |a Liu, Donghui |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Li, Zhaochao ELSEVIER |t Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading |d 2019 |g Amsterdam [u.a.] |w (DE-627)ELV00327988X |
773 | 1 | 8 | |g volume:280 |g year:2021 |g day:1 |g month:07 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.envpol.2021.116894 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 50.31 |j Technische Mechanik |q VZ |
936 | b | k | |a 56.11 |j Baukonstruktion |q VZ |
951 | |a AR | ||
952 | |d 280 |j 2021 |b 1 |c 0701 |h 0 |
author_variant |
y w yw |
---|---|
matchkey_str |
weiyimucuijingnazhaiwangjingliuxuekezhou:2021----:oiiynftociaisciieyirxfnniseaoie |
hierarchy_sort_str |
2021transfer abstract |
bklnumber |
50.31 56.11 |
publishDate |
2021 |
allfields |
10.1016/j.envpol.2021.116894 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001401.pica (DE-627)ELV054125480 (ELSEVIER)S0269-7491(21)00476-0 DE-627 ger DE-627 rakwb eng 690 VZ 50.31 bkl 56.11 bkl Wei, Yimu verfasserin aut Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio) 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms. Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms. Bioaccumulation Elsevier Toxicity Elsevier Pyriproxyfen Elsevier Zebrafish Elsevier Metabolism Elsevier Cui, Jingna oth Zhai, Wangjing oth Liu, Xueke oth Zhou, Zhiqiang oth Wang, Peng oth Liu, Donghui oth Enthalten in Elsevier Science Li, Zhaochao ELSEVIER Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading 2019 Amsterdam [u.a.] (DE-627)ELV00327988X volume:280 year:2021 day:1 month:07 pages:0 https://doi.org/10.1016/j.envpol.2021.116894 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 280 2021 1 0701 0 |
spelling |
10.1016/j.envpol.2021.116894 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001401.pica (DE-627)ELV054125480 (ELSEVIER)S0269-7491(21)00476-0 DE-627 ger DE-627 rakwb eng 690 VZ 50.31 bkl 56.11 bkl Wei, Yimu verfasserin aut Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio) 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms. Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms. Bioaccumulation Elsevier Toxicity Elsevier Pyriproxyfen Elsevier Zebrafish Elsevier Metabolism Elsevier Cui, Jingna oth Zhai, Wangjing oth Liu, Xueke oth Zhou, Zhiqiang oth Wang, Peng oth Liu, Donghui oth Enthalten in Elsevier Science Li, Zhaochao ELSEVIER Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading 2019 Amsterdam [u.a.] (DE-627)ELV00327988X volume:280 year:2021 day:1 month:07 pages:0 https://doi.org/10.1016/j.envpol.2021.116894 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 280 2021 1 0701 0 |
allfields_unstemmed |
10.1016/j.envpol.2021.116894 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001401.pica (DE-627)ELV054125480 (ELSEVIER)S0269-7491(21)00476-0 DE-627 ger DE-627 rakwb eng 690 VZ 50.31 bkl 56.11 bkl Wei, Yimu verfasserin aut Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio) 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms. Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms. Bioaccumulation Elsevier Toxicity Elsevier Pyriproxyfen Elsevier Zebrafish Elsevier Metabolism Elsevier Cui, Jingna oth Zhai, Wangjing oth Liu, Xueke oth Zhou, Zhiqiang oth Wang, Peng oth Liu, Donghui oth Enthalten in Elsevier Science Li, Zhaochao ELSEVIER Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading 2019 Amsterdam [u.a.] (DE-627)ELV00327988X volume:280 year:2021 day:1 month:07 pages:0 https://doi.org/10.1016/j.envpol.2021.116894 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 280 2021 1 0701 0 |
allfieldsGer |
10.1016/j.envpol.2021.116894 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001401.pica (DE-627)ELV054125480 (ELSEVIER)S0269-7491(21)00476-0 DE-627 ger DE-627 rakwb eng 690 VZ 50.31 bkl 56.11 bkl Wei, Yimu verfasserin aut Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio) 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms. Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms. Bioaccumulation Elsevier Toxicity Elsevier Pyriproxyfen Elsevier Zebrafish Elsevier Metabolism Elsevier Cui, Jingna oth Zhai, Wangjing oth Liu, Xueke oth Zhou, Zhiqiang oth Wang, Peng oth Liu, Donghui oth Enthalten in Elsevier Science Li, Zhaochao ELSEVIER Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading 2019 Amsterdam [u.a.] (DE-627)ELV00327988X volume:280 year:2021 day:1 month:07 pages:0 https://doi.org/10.1016/j.envpol.2021.116894 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 280 2021 1 0701 0 |
allfieldsSound |
10.1016/j.envpol.2021.116894 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001401.pica (DE-627)ELV054125480 (ELSEVIER)S0269-7491(21)00476-0 DE-627 ger DE-627 rakwb eng 690 VZ 50.31 bkl 56.11 bkl Wei, Yimu verfasserin aut Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio) 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms. Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms. Bioaccumulation Elsevier Toxicity Elsevier Pyriproxyfen Elsevier Zebrafish Elsevier Metabolism Elsevier Cui, Jingna oth Zhai, Wangjing oth Liu, Xueke oth Zhou, Zhiqiang oth Wang, Peng oth Liu, Donghui oth Enthalten in Elsevier Science Li, Zhaochao ELSEVIER Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading 2019 Amsterdam [u.a.] (DE-627)ELV00327988X volume:280 year:2021 day:1 month:07 pages:0 https://doi.org/10.1016/j.envpol.2021.116894 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 280 2021 1 0701 0 |
language |
English |
source |
Enthalten in Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading Amsterdam [u.a.] volume:280 year:2021 day:1 month:07 pages:0 |
sourceStr |
Enthalten in Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading Amsterdam [u.a.] volume:280 year:2021 day:1 month:07 pages:0 |
format_phy_str_mv |
Article |
bklname |
Technische Mechanik Baukonstruktion |
institution |
findex.gbv.de |
topic_facet |
Bioaccumulation Toxicity Pyriproxyfen Zebrafish Metabolism |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading |
authorswithroles_txt_mv |
Wei, Yimu @@aut@@ Cui, Jingna @@oth@@ Zhai, Wangjing @@oth@@ Liu, Xueke @@oth@@ Zhou, Zhiqiang @@oth@@ Wang, Peng @@oth@@ Liu, Donghui @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV00327988X |
dewey-sort |
3690 |
id |
ELV054125480 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV054125480</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626035721.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.envpol.2021.116894</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001401.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV054125480</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0269-7491(21)00476-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wei, Yimu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bioaccumulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Toxicity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pyriproxyfen</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Zebrafish</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metabolism</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Jingna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhai, Wangjing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xueke</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Zhiqiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Peng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Donghui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Li, Zhaochao ELSEVIER</subfield><subfield code="t">Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00327988X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:280</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:1</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.envpol.2021.116894</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">280</subfield><subfield code="j">2021</subfield><subfield code="b">1</subfield><subfield code="c">0701</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Wei, Yimu |
spellingShingle |
Wei, Yimu ddc 690 bkl 50.31 bkl 56.11 Elsevier Bioaccumulation Elsevier Toxicity Elsevier Pyriproxyfen Elsevier Zebrafish Elsevier Metabolism Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio) |
authorStr |
Wei, Yimu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00327988X |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 VZ 50.31 bkl 56.11 bkl Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio) Bioaccumulation Elsevier Toxicity Elsevier Pyriproxyfen Elsevier Zebrafish Elsevier Metabolism Elsevier |
topic |
ddc 690 bkl 50.31 bkl 56.11 Elsevier Bioaccumulation Elsevier Toxicity Elsevier Pyriproxyfen Elsevier Zebrafish Elsevier Metabolism |
topic_unstemmed |
ddc 690 bkl 50.31 bkl 56.11 Elsevier Bioaccumulation Elsevier Toxicity Elsevier Pyriproxyfen Elsevier Zebrafish Elsevier Metabolism |
topic_browse |
ddc 690 bkl 50.31 bkl 56.11 Elsevier Bioaccumulation Elsevier Toxicity Elsevier Pyriproxyfen Elsevier Zebrafish Elsevier Metabolism |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j c jc w z wz x l xl z z zz p w pw d l dl |
hierarchy_parent_title |
Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading |
hierarchy_parent_id |
ELV00327988X |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00327988X |
title |
Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio) |
ctrlnum |
(DE-627)ELV054125480 (ELSEVIER)S0269-7491(21)00476-0 |
title_full |
Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio) |
author_sort |
Wei, Yimu |
journal |
Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading |
journalStr |
Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Wei, Yimu |
container_volume |
280 |
class |
690 VZ 50.31 bkl 56.11 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wei, Yimu |
doi_str_mv |
10.1016/j.envpol.2021.116894 |
dewey-full |
690 |
title_sort |
toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (danio rerio) |
title_auth |
Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio) |
abstract |
Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms. |
abstractGer |
Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms. |
abstract_unstemmed |
Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio) |
url |
https://doi.org/10.1016/j.envpol.2021.116894 |
remote_bool |
true |
author2 |
Cui, Jingna Zhai, Wangjing Liu, Xueke Zhou, Zhiqiang Wang, Peng Liu, Donghui |
author2Str |
Cui, Jingna Zhai, Wangjing Liu, Xueke Zhou, Zhiqiang Wang, Peng Liu, Donghui |
ppnlink |
ELV00327988X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.envpol.2021.116894 |
up_date |
2024-07-06T20:51:05.822Z |
_version_ |
1803864313245466624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV054125480</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626035721.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.envpol.2021.116894</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001401.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV054125480</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0269-7491(21)00476-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wei, Yimu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4′–OH– pyriproxyfen and 5″–OH– pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4′–OH– pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (−)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bioaccumulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Toxicity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pyriproxyfen</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Zebrafish</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metabolism</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Jingna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhai, Wangjing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xueke</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Zhiqiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Peng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Donghui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Li, Zhaochao ELSEVIER</subfield><subfield code="t">Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00327988X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:280</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:1</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.envpol.2021.116894</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">280</subfield><subfield code="j">2021</subfield><subfield code="b">1</subfield><subfield code="c">0701</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.402815 |