Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models
• Machine learning models predicted dose distributions for left-sided breast cancer. • Simple U-net based network can produce clinically acceptable dose distributions. • The 6-layer 3D neural network outperformed the 7-layer 2D neural network. • Predictions consistently had lower V20 of the left lun...
Ausführliche Beschreibung
Autor*in: |
Hedden, Natasha [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Umfang: |
7 |
---|
Übergeordnetes Werk: |
Enthalten in: An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study - Almanassra, Ismail W. ELSEVIER, 2019, European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:83 ; year:2021 ; pages:101-107 ; extent:7 |
Links: |
---|
DOI / URN: |
10.1016/j.ejmp.2021.02.021 |
---|
Katalog-ID: |
ELV05426720X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV05426720X | ||
003 | DE-627 | ||
005 | 20230624205915.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ejmp.2021.02.021 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001593.pica |
035 | |a (DE-627)ELV05426720X | ||
035 | |a (ELSEVIER)S1120-1797(21)00110-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.21 |2 bkl | ||
100 | 1 | |a Hedden, Natasha |e verfasserin |4 aut | |
245 | 1 | 0 | |a Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models |
264 | 1 | |c 2021 | |
300 | |a 7 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • Machine learning models predicted dose distributions for left-sided breast cancer. • Simple U-net based network can produce clinically acceptable dose distributions. • The 6-layer 3D neural network outperformed the 7-layer 2D neural network. • Predictions consistently had lower V20 of the left lung than in the clinical plans. • Mean dose difference was always within 0.02% of dose prescription for both models. | ||
650 | 7 | |a Deep learning |2 Elsevier | |
650 | 7 | |a Dose prediction |2 Elsevier | |
650 | 7 | |a Machine learning |2 Elsevier | |
650 | 7 | |a Breast cancer |2 Elsevier | |
700 | 1 | |a Xu, Heping |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Almanassra, Ismail W. ELSEVIER |t An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |d 2019 |d European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology |g Amsterdam |w (DE-627)ELV003857336 |
773 | 1 | 8 | |g volume:83 |g year:2021 |g pages:101-107 |g extent:7 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ejmp.2021.02.021 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.21 |j Lösungen |j Flüssigkeiten |x Physikalische Chemie |q VZ |
951 | |a AR | ||
952 | |d 83 |j 2021 |h 101-107 |g 7 |
author_variant |
n h nh |
---|---|
matchkey_str |
heddennatashaxuheping:2021----:aitoteayoerdcinolfsddratacruigwdmninlntr |
hierarchy_sort_str |
2021 |
bklnumber |
35.21 |
publishDate |
2021 |
allfields |
10.1016/j.ejmp.2021.02.021 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001593.pica (DE-627)ELV05426720X (ELSEVIER)S1120-1797(21)00110-1 DE-627 ger DE-627 rakwb eng 540 VZ 35.21 bkl Hedden, Natasha verfasserin aut Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models 2021 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Machine learning models predicted dose distributions for left-sided breast cancer. • Simple U-net based network can produce clinically acceptable dose distributions. • The 6-layer 3D neural network outperformed the 7-layer 2D neural network. • Predictions consistently had lower V20 of the left lung than in the clinical plans. • Mean dose difference was always within 0.02% of dose prescription for both models. Deep learning Elsevier Dose prediction Elsevier Machine learning Elsevier Breast cancer Elsevier Xu, Heping oth Enthalten in Elsevier Almanassra, Ismail W. ELSEVIER An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study 2019 European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology Amsterdam (DE-627)ELV003857336 volume:83 year:2021 pages:101-107 extent:7 https://doi.org/10.1016/j.ejmp.2021.02.021 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.21 Lösungen Flüssigkeiten Physikalische Chemie VZ AR 83 2021 101-107 7 |
spelling |
10.1016/j.ejmp.2021.02.021 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001593.pica (DE-627)ELV05426720X (ELSEVIER)S1120-1797(21)00110-1 DE-627 ger DE-627 rakwb eng 540 VZ 35.21 bkl Hedden, Natasha verfasserin aut Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models 2021 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Machine learning models predicted dose distributions for left-sided breast cancer. • Simple U-net based network can produce clinically acceptable dose distributions. • The 6-layer 3D neural network outperformed the 7-layer 2D neural network. • Predictions consistently had lower V20 of the left lung than in the clinical plans. • Mean dose difference was always within 0.02% of dose prescription for both models. Deep learning Elsevier Dose prediction Elsevier Machine learning Elsevier Breast cancer Elsevier Xu, Heping oth Enthalten in Elsevier Almanassra, Ismail W. ELSEVIER An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study 2019 European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology Amsterdam (DE-627)ELV003857336 volume:83 year:2021 pages:101-107 extent:7 https://doi.org/10.1016/j.ejmp.2021.02.021 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.21 Lösungen Flüssigkeiten Physikalische Chemie VZ AR 83 2021 101-107 7 |
allfields_unstemmed |
10.1016/j.ejmp.2021.02.021 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001593.pica (DE-627)ELV05426720X (ELSEVIER)S1120-1797(21)00110-1 DE-627 ger DE-627 rakwb eng 540 VZ 35.21 bkl Hedden, Natasha verfasserin aut Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models 2021 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Machine learning models predicted dose distributions for left-sided breast cancer. • Simple U-net based network can produce clinically acceptable dose distributions. • The 6-layer 3D neural network outperformed the 7-layer 2D neural network. • Predictions consistently had lower V20 of the left lung than in the clinical plans. • Mean dose difference was always within 0.02% of dose prescription for both models. Deep learning Elsevier Dose prediction Elsevier Machine learning Elsevier Breast cancer Elsevier Xu, Heping oth Enthalten in Elsevier Almanassra, Ismail W. ELSEVIER An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study 2019 European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology Amsterdam (DE-627)ELV003857336 volume:83 year:2021 pages:101-107 extent:7 https://doi.org/10.1016/j.ejmp.2021.02.021 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.21 Lösungen Flüssigkeiten Physikalische Chemie VZ AR 83 2021 101-107 7 |
allfieldsGer |
10.1016/j.ejmp.2021.02.021 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001593.pica (DE-627)ELV05426720X (ELSEVIER)S1120-1797(21)00110-1 DE-627 ger DE-627 rakwb eng 540 VZ 35.21 bkl Hedden, Natasha verfasserin aut Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models 2021 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Machine learning models predicted dose distributions for left-sided breast cancer. • Simple U-net based network can produce clinically acceptable dose distributions. • The 6-layer 3D neural network outperformed the 7-layer 2D neural network. • Predictions consistently had lower V20 of the left lung than in the clinical plans. • Mean dose difference was always within 0.02% of dose prescription for both models. Deep learning Elsevier Dose prediction Elsevier Machine learning Elsevier Breast cancer Elsevier Xu, Heping oth Enthalten in Elsevier Almanassra, Ismail W. ELSEVIER An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study 2019 European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology Amsterdam (DE-627)ELV003857336 volume:83 year:2021 pages:101-107 extent:7 https://doi.org/10.1016/j.ejmp.2021.02.021 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.21 Lösungen Flüssigkeiten Physikalische Chemie VZ AR 83 2021 101-107 7 |
allfieldsSound |
10.1016/j.ejmp.2021.02.021 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001593.pica (DE-627)ELV05426720X (ELSEVIER)S1120-1797(21)00110-1 DE-627 ger DE-627 rakwb eng 540 VZ 35.21 bkl Hedden, Natasha verfasserin aut Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models 2021 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Machine learning models predicted dose distributions for left-sided breast cancer. • Simple U-net based network can produce clinically acceptable dose distributions. • The 6-layer 3D neural network outperformed the 7-layer 2D neural network. • Predictions consistently had lower V20 of the left lung than in the clinical plans. • Mean dose difference was always within 0.02% of dose prescription for both models. Deep learning Elsevier Dose prediction Elsevier Machine learning Elsevier Breast cancer Elsevier Xu, Heping oth Enthalten in Elsevier Almanassra, Ismail W. ELSEVIER An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study 2019 European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology Amsterdam (DE-627)ELV003857336 volume:83 year:2021 pages:101-107 extent:7 https://doi.org/10.1016/j.ejmp.2021.02.021 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 35.21 Lösungen Flüssigkeiten Physikalische Chemie VZ AR 83 2021 101-107 7 |
language |
English |
source |
Enthalten in An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study Amsterdam volume:83 year:2021 pages:101-107 extent:7 |
sourceStr |
Enthalten in An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study Amsterdam volume:83 year:2021 pages:101-107 extent:7 |
format_phy_str_mv |
Article |
bklname |
Lösungen Flüssigkeiten |
institution |
findex.gbv.de |
topic_facet |
Deep learning Dose prediction Machine learning Breast cancer |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |
authorswithroles_txt_mv |
Hedden, Natasha @@aut@@ Xu, Heping @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV003857336 |
dewey-sort |
3540 |
id |
ELV05426720X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05426720X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624205915.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ejmp.2021.02.021</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001593.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05426720X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1120-1797(21)00110-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hedden, Natasha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Machine learning models predicted dose distributions for left-sided breast cancer. • Simple U-net based network can produce clinically acceptable dose distributions. • The 6-layer 3D neural network outperformed the 7-layer 2D neural network. • Predictions consistently had lower V20 of the left lung than in the clinical plans. • Mean dose difference was always within 0.02% of dose prescription for both models.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Deep learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dose prediction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Breast cancer</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Heping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Almanassra, Ismail W. ELSEVIER</subfield><subfield code="t">An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study</subfield><subfield code="d">2019</subfield><subfield code="d">European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV003857336</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:83</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:101-107</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ejmp.2021.02.021</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.21</subfield><subfield code="j">Lösungen</subfield><subfield code="j">Flüssigkeiten</subfield><subfield code="x">Physikalische Chemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">83</subfield><subfield code="j">2021</subfield><subfield code="h">101-107</subfield><subfield code="g">7</subfield></datafield></record></collection>
|
author |
Hedden, Natasha |
spellingShingle |
Hedden, Natasha ddc 540 bkl 35.21 Elsevier Deep learning Elsevier Dose prediction Elsevier Machine learning Elsevier Breast cancer Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models |
authorStr |
Hedden, Natasha |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003857336 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 VZ 35.21 bkl Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models Deep learning Elsevier Dose prediction Elsevier Machine learning Elsevier Breast cancer Elsevier |
topic |
ddc 540 bkl 35.21 Elsevier Deep learning Elsevier Dose prediction Elsevier Machine learning Elsevier Breast cancer |
topic_unstemmed |
ddc 540 bkl 35.21 Elsevier Deep learning Elsevier Dose prediction Elsevier Machine learning Elsevier Breast cancer |
topic_browse |
ddc 540 bkl 35.21 Elsevier Deep learning Elsevier Dose prediction Elsevier Machine learning Elsevier Breast cancer |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h x hx |
hierarchy_parent_title |
An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |
hierarchy_parent_id |
ELV003857336 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003857336 |
title |
Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models |
ctrlnum |
(DE-627)ELV05426720X (ELSEVIER)S1120-1797(21)00110-1 |
title_full |
Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models |
author_sort |
Hedden, Natasha |
journal |
An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |
journalStr |
An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
101 |
author_browse |
Hedden, Natasha |
container_volume |
83 |
physical |
7 |
class |
540 VZ 35.21 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hedden, Natasha |
doi_str_mv |
10.1016/j.ejmp.2021.02.021 |
dewey-full |
540 |
title_sort |
radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models |
title_auth |
Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models |
abstract |
• Machine learning models predicted dose distributions for left-sided breast cancer. • Simple U-net based network can produce clinically acceptable dose distributions. • The 6-layer 3D neural network outperformed the 7-layer 2D neural network. • Predictions consistently had lower V20 of the left lung than in the clinical plans. • Mean dose difference was always within 0.02% of dose prescription for both models. |
abstractGer |
• Machine learning models predicted dose distributions for left-sided breast cancer. • Simple U-net based network can produce clinically acceptable dose distributions. • The 6-layer 3D neural network outperformed the 7-layer 2D neural network. • Predictions consistently had lower V20 of the left lung than in the clinical plans. • Mean dose difference was always within 0.02% of dose prescription for both models. |
abstract_unstemmed |
• Machine learning models predicted dose distributions for left-sided breast cancer. • Simple U-net based network can produce clinically acceptable dose distributions. • The 6-layer 3D neural network outperformed the 7-layer 2D neural network. • Predictions consistently had lower V20 of the left lung than in the clinical plans. • Mean dose difference was always within 0.02% of dose prescription for both models. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models |
url |
https://doi.org/10.1016/j.ejmp.2021.02.021 |
remote_bool |
true |
author2 |
Xu, Heping |
author2Str |
Xu, Heping |
ppnlink |
ELV003857336 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.ejmp.2021.02.021 |
up_date |
2024-07-06T21:14:54.792Z |
_version_ |
1803865811628064768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05426720X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624205915.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ejmp.2021.02.021</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001593.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05426720X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1120-1797(21)00110-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hedden, Natasha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Machine learning models predicted dose distributions for left-sided breast cancer. • Simple U-net based network can produce clinically acceptable dose distributions. • The 6-layer 3D neural network outperformed the 7-layer 2D neural network. • Predictions consistently had lower V20 of the left lung than in the clinical plans. • Mean dose difference was always within 0.02% of dose prescription for both models.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Deep learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dose prediction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Breast cancer</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Heping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Almanassra, Ismail W. ELSEVIER</subfield><subfield code="t">An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study</subfield><subfield code="d">2019</subfield><subfield code="d">European journal of medical physics : an international journal devoted to the applications of physics to medicine and biology</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV003857336</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:83</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:101-107</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ejmp.2021.02.021</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.21</subfield><subfield code="j">Lösungen</subfield><subfield code="j">Flüssigkeiten</subfield><subfield code="x">Physikalische Chemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">83</subfield><subfield code="j">2021</subfield><subfield code="h">101-107</subfield><subfield code="g">7</subfield></datafield></record></collection>
|
score |
7.4011335 |