Homologous chemiluminescence resonance energy transfer on the interface of WS 2 quantum dots for monitoring photocatalytic H 2 O 2 evaluation
Water disinfection is a significant process in water treatment. As the widely used disinfection method, sodium hypochlorite (NaClO) disinfection has the potential carcinogenic risk because of its chloramine byproducts. Hence, the green and noncarcinogenic photocatalytic disinfection becomes a new fa...
Ausführliche Beschreibung
Autor*in: |
Sun, Tong [verfasserIn] Su, Yingying [verfasserIn] Sun, Mingxia [verfasserIn] Lv, Yi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Microchemical journal - Orlando, Fla. : Academic Press, 1957, 168 |
---|---|
Übergeordnetes Werk: |
volume:168 |
DOI / URN: |
10.1016/j.microc.2021.106344 |
---|
Katalog-ID: |
ELV054602866 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV054602866 | ||
003 | DE-627 | ||
005 | 20240104093504.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.microc.2021.106344 |2 doi | |
035 | |a (DE-627)ELV054602866 | ||
035 | |a (ELSEVIER)S0026-265X(21)00428-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.00 |2 bkl | ||
100 | 1 | |a Sun, Tong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Homologous chemiluminescence resonance energy transfer on the interface of WS 2 quantum dots for monitoring photocatalytic H 2 O 2 evaluation |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Water disinfection is a significant process in water treatment. As the widely used disinfection method, sodium hypochlorite (NaClO) disinfection has the potential carcinogenic risk because of its chloramine byproducts. Hence, the green and noncarcinogenic photocatalytic disinfection becomes a new favourite. In photocatalytic disinfection, H2O2 with long lifetime and lasting antibacterial property plays a principal role. Therefore, monitoring H2O2 in this process is imperative and challenging, which facilitated the development of efficient disinfection technique. Herein, a novel homologous chemiluminescence resonance energy transfer (CRET) on the interface of WS2 QDS was designed to amplify the chemiluminescence (CL) emission of NaClO-H2O2 system. Interestingly, energy donators and acceptors were originated from WS2 QDs in this CRET system. In detail, W (IV) on the interface of WS2 QDS were oxidized to W (VI) by NaClO, and then W (VI) combined with H2O2 to generate in-situ reactive peroxotungstate. The unstable peroxotungstate rapidly decomposed to singlet oxygen (1O2) and then dimerised to (1O2)2* (a dimer of singlet oxygen). WS2 QDS received the energy from (1O2)2* to produce strong luminescence. Based on this mechanism, a new platform for H2O2 determination with high selectivity and sensitivity was proposed and successfully applied to evaluate the photocatalytic properties of five two-dimensional materials by monitoring the photocatalytic H2O2 evolution. This work deepens the understanding of the excellent property of WS2 QDs. More constructively, it provides a novel idea for designing effective CRET and explores its potential application in photocatalytic research. | ||
650 | 4 | |a Tungsten disulphide | |
650 | 4 | |a Photocatalysis | |
650 | 4 | |a Singlet oxygen | |
650 | 4 | |a Chemiluminescence | |
650 | 4 | |a CRET | |
700 | 1 | |a Su, Yingying |e verfasserin |4 aut | |
700 | 1 | |a Sun, Mingxia |e verfasserin |4 aut | |
700 | 1 | |a Lv, Yi |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Microchemical journal |d Orlando, Fla. : Academic Press, 1957 |g 168 |h Online-Ressource |w (DE-627)267840217 |w (DE-600)1471165-5 |w (DE-576)259483729 |x 1095-9149 |7 nnns |
773 | 1 | 8 | |g volume:168 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 35.00 |j Chemie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 168 |
author_variant |
t s ts y s ys m s ms y l yl |
---|---|
matchkey_str |
article:10959149:2021----::ooooshmlmnsecrsnnenryrnfrnhitraefsqatmosomntr |
hierarchy_sort_str |
2021 |
bklnumber |
35.00 |
publishDate |
2021 |
allfields |
10.1016/j.microc.2021.106344 doi (DE-627)ELV054602866 (ELSEVIER)S0026-265X(21)00428-8 DE-627 ger DE-627 rda eng 540 VZ 35.00 bkl Sun, Tong verfasserin aut Homologous chemiluminescence resonance energy transfer on the interface of WS 2 quantum dots for monitoring photocatalytic H 2 O 2 evaluation 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Water disinfection is a significant process in water treatment. As the widely used disinfection method, sodium hypochlorite (NaClO) disinfection has the potential carcinogenic risk because of its chloramine byproducts. Hence, the green and noncarcinogenic photocatalytic disinfection becomes a new favourite. In photocatalytic disinfection, H2O2 with long lifetime and lasting antibacterial property plays a principal role. Therefore, monitoring H2O2 in this process is imperative and challenging, which facilitated the development of efficient disinfection technique. Herein, a novel homologous chemiluminescence resonance energy transfer (CRET) on the interface of WS2 QDS was designed to amplify the chemiluminescence (CL) emission of NaClO-H2O2 system. Interestingly, energy donators and acceptors were originated from WS2 QDs in this CRET system. In detail, W (IV) on the interface of WS2 QDS were oxidized to W (VI) by NaClO, and then W (VI) combined with H2O2 to generate in-situ reactive peroxotungstate. The unstable peroxotungstate rapidly decomposed to singlet oxygen (1O2) and then dimerised to (1O2)2* (a dimer of singlet oxygen). WS2 QDS received the energy from (1O2)2* to produce strong luminescence. Based on this mechanism, a new platform for H2O2 determination with high selectivity and sensitivity was proposed and successfully applied to evaluate the photocatalytic properties of five two-dimensional materials by monitoring the photocatalytic H2O2 evolution. This work deepens the understanding of the excellent property of WS2 QDs. More constructively, it provides a novel idea for designing effective CRET and explores its potential application in photocatalytic research. Tungsten disulphide Photocatalysis Singlet oxygen Chemiluminescence CRET Su, Yingying verfasserin aut Sun, Mingxia verfasserin aut Lv, Yi verfasserin aut Enthalten in Microchemical journal Orlando, Fla. : Academic Press, 1957 168 Online-Ressource (DE-627)267840217 (DE-600)1471165-5 (DE-576)259483729 1095-9149 nnns volume:168 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines VZ AR 168 |
spelling |
10.1016/j.microc.2021.106344 doi (DE-627)ELV054602866 (ELSEVIER)S0026-265X(21)00428-8 DE-627 ger DE-627 rda eng 540 VZ 35.00 bkl Sun, Tong verfasserin aut Homologous chemiluminescence resonance energy transfer on the interface of WS 2 quantum dots for monitoring photocatalytic H 2 O 2 evaluation 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Water disinfection is a significant process in water treatment. As the widely used disinfection method, sodium hypochlorite (NaClO) disinfection has the potential carcinogenic risk because of its chloramine byproducts. Hence, the green and noncarcinogenic photocatalytic disinfection becomes a new favourite. In photocatalytic disinfection, H2O2 with long lifetime and lasting antibacterial property plays a principal role. Therefore, monitoring H2O2 in this process is imperative and challenging, which facilitated the development of efficient disinfection technique. Herein, a novel homologous chemiluminescence resonance energy transfer (CRET) on the interface of WS2 QDS was designed to amplify the chemiluminescence (CL) emission of NaClO-H2O2 system. Interestingly, energy donators and acceptors were originated from WS2 QDs in this CRET system. In detail, W (IV) on the interface of WS2 QDS were oxidized to W (VI) by NaClO, and then W (VI) combined with H2O2 to generate in-situ reactive peroxotungstate. The unstable peroxotungstate rapidly decomposed to singlet oxygen (1O2) and then dimerised to (1O2)2* (a dimer of singlet oxygen). WS2 QDS received the energy from (1O2)2* to produce strong luminescence. Based on this mechanism, a new platform for H2O2 determination with high selectivity and sensitivity was proposed and successfully applied to evaluate the photocatalytic properties of five two-dimensional materials by monitoring the photocatalytic H2O2 evolution. This work deepens the understanding of the excellent property of WS2 QDs. More constructively, it provides a novel idea for designing effective CRET and explores its potential application in photocatalytic research. Tungsten disulphide Photocatalysis Singlet oxygen Chemiluminescence CRET Su, Yingying verfasserin aut Sun, Mingxia verfasserin aut Lv, Yi verfasserin aut Enthalten in Microchemical journal Orlando, Fla. : Academic Press, 1957 168 Online-Ressource (DE-627)267840217 (DE-600)1471165-5 (DE-576)259483729 1095-9149 nnns volume:168 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines VZ AR 168 |
allfields_unstemmed |
10.1016/j.microc.2021.106344 doi (DE-627)ELV054602866 (ELSEVIER)S0026-265X(21)00428-8 DE-627 ger DE-627 rda eng 540 VZ 35.00 bkl Sun, Tong verfasserin aut Homologous chemiluminescence resonance energy transfer on the interface of WS 2 quantum dots for monitoring photocatalytic H 2 O 2 evaluation 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Water disinfection is a significant process in water treatment. As the widely used disinfection method, sodium hypochlorite (NaClO) disinfection has the potential carcinogenic risk because of its chloramine byproducts. Hence, the green and noncarcinogenic photocatalytic disinfection becomes a new favourite. In photocatalytic disinfection, H2O2 with long lifetime and lasting antibacterial property plays a principal role. Therefore, monitoring H2O2 in this process is imperative and challenging, which facilitated the development of efficient disinfection technique. Herein, a novel homologous chemiluminescence resonance energy transfer (CRET) on the interface of WS2 QDS was designed to amplify the chemiluminescence (CL) emission of NaClO-H2O2 system. Interestingly, energy donators and acceptors were originated from WS2 QDs in this CRET system. In detail, W (IV) on the interface of WS2 QDS were oxidized to W (VI) by NaClO, and then W (VI) combined with H2O2 to generate in-situ reactive peroxotungstate. The unstable peroxotungstate rapidly decomposed to singlet oxygen (1O2) and then dimerised to (1O2)2* (a dimer of singlet oxygen). WS2 QDS received the energy from (1O2)2* to produce strong luminescence. Based on this mechanism, a new platform for H2O2 determination with high selectivity and sensitivity was proposed and successfully applied to evaluate the photocatalytic properties of five two-dimensional materials by monitoring the photocatalytic H2O2 evolution. This work deepens the understanding of the excellent property of WS2 QDs. More constructively, it provides a novel idea for designing effective CRET and explores its potential application in photocatalytic research. Tungsten disulphide Photocatalysis Singlet oxygen Chemiluminescence CRET Su, Yingying verfasserin aut Sun, Mingxia verfasserin aut Lv, Yi verfasserin aut Enthalten in Microchemical journal Orlando, Fla. : Academic Press, 1957 168 Online-Ressource (DE-627)267840217 (DE-600)1471165-5 (DE-576)259483729 1095-9149 nnns volume:168 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines VZ AR 168 |
allfieldsGer |
10.1016/j.microc.2021.106344 doi (DE-627)ELV054602866 (ELSEVIER)S0026-265X(21)00428-8 DE-627 ger DE-627 rda eng 540 VZ 35.00 bkl Sun, Tong verfasserin aut Homologous chemiluminescence resonance energy transfer on the interface of WS 2 quantum dots for monitoring photocatalytic H 2 O 2 evaluation 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Water disinfection is a significant process in water treatment. As the widely used disinfection method, sodium hypochlorite (NaClO) disinfection has the potential carcinogenic risk because of its chloramine byproducts. Hence, the green and noncarcinogenic photocatalytic disinfection becomes a new favourite. In photocatalytic disinfection, H2O2 with long lifetime and lasting antibacterial property plays a principal role. Therefore, monitoring H2O2 in this process is imperative and challenging, which facilitated the development of efficient disinfection technique. Herein, a novel homologous chemiluminescence resonance energy transfer (CRET) on the interface of WS2 QDS was designed to amplify the chemiluminescence (CL) emission of NaClO-H2O2 system. Interestingly, energy donators and acceptors were originated from WS2 QDs in this CRET system. In detail, W (IV) on the interface of WS2 QDS were oxidized to W (VI) by NaClO, and then W (VI) combined with H2O2 to generate in-situ reactive peroxotungstate. The unstable peroxotungstate rapidly decomposed to singlet oxygen (1O2) and then dimerised to (1O2)2* (a dimer of singlet oxygen). WS2 QDS received the energy from (1O2)2* to produce strong luminescence. Based on this mechanism, a new platform for H2O2 determination with high selectivity and sensitivity was proposed and successfully applied to evaluate the photocatalytic properties of five two-dimensional materials by monitoring the photocatalytic H2O2 evolution. This work deepens the understanding of the excellent property of WS2 QDs. More constructively, it provides a novel idea for designing effective CRET and explores its potential application in photocatalytic research. Tungsten disulphide Photocatalysis Singlet oxygen Chemiluminescence CRET Su, Yingying verfasserin aut Sun, Mingxia verfasserin aut Lv, Yi verfasserin aut Enthalten in Microchemical journal Orlando, Fla. : Academic Press, 1957 168 Online-Ressource (DE-627)267840217 (DE-600)1471165-5 (DE-576)259483729 1095-9149 nnns volume:168 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines VZ AR 168 |
allfieldsSound |
10.1016/j.microc.2021.106344 doi (DE-627)ELV054602866 (ELSEVIER)S0026-265X(21)00428-8 DE-627 ger DE-627 rda eng 540 VZ 35.00 bkl Sun, Tong verfasserin aut Homologous chemiluminescence resonance energy transfer on the interface of WS 2 quantum dots for monitoring photocatalytic H 2 O 2 evaluation 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Water disinfection is a significant process in water treatment. As the widely used disinfection method, sodium hypochlorite (NaClO) disinfection has the potential carcinogenic risk because of its chloramine byproducts. Hence, the green and noncarcinogenic photocatalytic disinfection becomes a new favourite. In photocatalytic disinfection, H2O2 with long lifetime and lasting antibacterial property plays a principal role. Therefore, monitoring H2O2 in this process is imperative and challenging, which facilitated the development of efficient disinfection technique. Herein, a novel homologous chemiluminescence resonance energy transfer (CRET) on the interface of WS2 QDS was designed to amplify the chemiluminescence (CL) emission of NaClO-H2O2 system. Interestingly, energy donators and acceptors were originated from WS2 QDs in this CRET system. In detail, W (IV) on the interface of WS2 QDS were oxidized to W (VI) by NaClO, and then W (VI) combined with H2O2 to generate in-situ reactive peroxotungstate. The unstable peroxotungstate rapidly decomposed to singlet oxygen (1O2) and then dimerised to (1O2)2* (a dimer of singlet oxygen). WS2 QDS received the energy from (1O2)2* to produce strong luminescence. Based on this mechanism, a new platform for H2O2 determination with high selectivity and sensitivity was proposed and successfully applied to evaluate the photocatalytic properties of five two-dimensional materials by monitoring the photocatalytic H2O2 evolution. This work deepens the understanding of the excellent property of WS2 QDs. More constructively, it provides a novel idea for designing effective CRET and explores its potential application in photocatalytic research. Tungsten disulphide Photocatalysis Singlet oxygen Chemiluminescence CRET Su, Yingying verfasserin aut Sun, Mingxia verfasserin aut Lv, Yi verfasserin aut Enthalten in Microchemical journal Orlando, Fla. : Academic Press, 1957 168 Online-Ressource (DE-627)267840217 (DE-600)1471165-5 (DE-576)259483729 1095-9149 nnns volume:168 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines VZ AR 168 |
language |
English |
source |
Enthalten in Microchemical journal 168 volume:168 |
sourceStr |
Enthalten in Microchemical journal 168 volume:168 |
format_phy_str_mv |
Article |
bklname |
Chemie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Tungsten disulphide Photocatalysis Singlet oxygen Chemiluminescence CRET |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Microchemical journal |
authorswithroles_txt_mv |
Sun, Tong @@aut@@ Su, Yingying @@aut@@ Sun, Mingxia @@aut@@ Lv, Yi @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
267840217 |
dewey-sort |
3540 |
id |
ELV054602866 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV054602866</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240104093504.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.microc.2021.106344</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV054602866</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0026-265X(21)00428-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Tong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homologous chemiluminescence resonance energy transfer on the interface of WS 2 quantum dots for monitoring photocatalytic H 2 O 2 evaluation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Water disinfection is a significant process in water treatment. As the widely used disinfection method, sodium hypochlorite (NaClO) disinfection has the potential carcinogenic risk because of its chloramine byproducts. Hence, the green and noncarcinogenic photocatalytic disinfection becomes a new favourite. In photocatalytic disinfection, H2O2 with long lifetime and lasting antibacterial property plays a principal role. Therefore, monitoring H2O2 in this process is imperative and challenging, which facilitated the development of efficient disinfection technique. Herein, a novel homologous chemiluminescence resonance energy transfer (CRET) on the interface of WS2 QDS was designed to amplify the chemiluminescence (CL) emission of NaClO-H2O2 system. Interestingly, energy donators and acceptors were originated from WS2 QDs in this CRET system. In detail, W (IV) on the interface of WS2 QDS were oxidized to W (VI) by NaClO, and then W (VI) combined with H2O2 to generate in-situ reactive peroxotungstate. The unstable peroxotungstate rapidly decomposed to singlet oxygen (1O2) and then dimerised to (1O2)2* (a dimer of singlet oxygen). WS2 QDS received the energy from (1O2)2* to produce strong luminescence. Based on this mechanism, a new platform for H2O2 determination with high selectivity and sensitivity was proposed and successfully applied to evaluate the photocatalytic properties of five two-dimensional materials by monitoring the photocatalytic H2O2 evolution. This work deepens the understanding of the excellent property of WS2 QDs. More constructively, it provides a novel idea for designing effective CRET and explores its potential application in photocatalytic research.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tungsten disulphide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singlet oxygen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemiluminescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CRET</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Yingying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Mingxia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microchemical journal</subfield><subfield code="d">Orlando, Fla. : Academic Press, 1957</subfield><subfield code="g">168</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)267840217</subfield><subfield code="w">(DE-600)1471165-5</subfield><subfield code="w">(DE-576)259483729</subfield><subfield code="x">1095-9149</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">168</subfield></datafield></record></collection>
|
author |
Sun, Tong |
spellingShingle |
Sun, Tong ddc 540 bkl 35.00 misc Tungsten disulphide misc Photocatalysis misc Singlet oxygen misc Chemiluminescence misc CRET Homologous chemiluminescence resonance energy transfer on the interface of WS 2 quantum dots for monitoring photocatalytic H 2 O 2 evaluation |
authorStr |
Sun, Tong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)267840217 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1095-9149 |
topic_title |
540 VZ 35.00 bkl Homologous chemiluminescence resonance energy transfer on the interface of WS 2 quantum dots for monitoring photocatalytic H 2 O 2 evaluation Tungsten disulphide Photocatalysis Singlet oxygen Chemiluminescence CRET |
topic |
ddc 540 bkl 35.00 misc Tungsten disulphide misc Photocatalysis misc Singlet oxygen misc Chemiluminescence misc CRET |
topic_unstemmed |
ddc 540 bkl 35.00 misc Tungsten disulphide misc Photocatalysis misc Singlet oxygen misc Chemiluminescence misc CRET |
topic_browse |
ddc 540 bkl 35.00 misc Tungsten disulphide misc Photocatalysis misc Singlet oxygen misc Chemiluminescence misc CRET |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Microchemical journal |
hierarchy_parent_id |
267840217 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Microchemical journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)267840217 (DE-600)1471165-5 (DE-576)259483729 |
title |
Homologous chemiluminescence resonance energy transfer on the interface of WS 2 quantum dots for monitoring photocatalytic H 2 O 2 evaluation |
ctrlnum |
(DE-627)ELV054602866 (ELSEVIER)S0026-265X(21)00428-8 |
title_full |
Homologous chemiluminescence resonance energy transfer on the interface of WS 2 quantum dots for monitoring photocatalytic H 2 O 2 evaluation |
author_sort |
Sun, Tong |
journal |
Microchemical journal |
journalStr |
Microchemical journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Sun, Tong Su, Yingying Sun, Mingxia Lv, Yi |
container_volume |
168 |
class |
540 VZ 35.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Sun, Tong |
doi_str_mv |
10.1016/j.microc.2021.106344 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
homologous chemiluminescence resonance energy transfer on the interface of ws 2 quantum dots for monitoring photocatalytic h 2 o 2 evaluation |
title_auth |
Homologous chemiluminescence resonance energy transfer on the interface of WS 2 quantum dots for monitoring photocatalytic H 2 O 2 evaluation |
abstract |
Water disinfection is a significant process in water treatment. As the widely used disinfection method, sodium hypochlorite (NaClO) disinfection has the potential carcinogenic risk because of its chloramine byproducts. Hence, the green and noncarcinogenic photocatalytic disinfection becomes a new favourite. In photocatalytic disinfection, H2O2 with long lifetime and lasting antibacterial property plays a principal role. Therefore, monitoring H2O2 in this process is imperative and challenging, which facilitated the development of efficient disinfection technique. Herein, a novel homologous chemiluminescence resonance energy transfer (CRET) on the interface of WS2 QDS was designed to amplify the chemiluminescence (CL) emission of NaClO-H2O2 system. Interestingly, energy donators and acceptors were originated from WS2 QDs in this CRET system. In detail, W (IV) on the interface of WS2 QDS were oxidized to W (VI) by NaClO, and then W (VI) combined with H2O2 to generate in-situ reactive peroxotungstate. The unstable peroxotungstate rapidly decomposed to singlet oxygen (1O2) and then dimerised to (1O2)2* (a dimer of singlet oxygen). WS2 QDS received the energy from (1O2)2* to produce strong luminescence. Based on this mechanism, a new platform for H2O2 determination with high selectivity and sensitivity was proposed and successfully applied to evaluate the photocatalytic properties of five two-dimensional materials by monitoring the photocatalytic H2O2 evolution. This work deepens the understanding of the excellent property of WS2 QDs. More constructively, it provides a novel idea for designing effective CRET and explores its potential application in photocatalytic research. |
abstractGer |
Water disinfection is a significant process in water treatment. As the widely used disinfection method, sodium hypochlorite (NaClO) disinfection has the potential carcinogenic risk because of its chloramine byproducts. Hence, the green and noncarcinogenic photocatalytic disinfection becomes a new favourite. In photocatalytic disinfection, H2O2 with long lifetime and lasting antibacterial property plays a principal role. Therefore, monitoring H2O2 in this process is imperative and challenging, which facilitated the development of efficient disinfection technique. Herein, a novel homologous chemiluminescence resonance energy transfer (CRET) on the interface of WS2 QDS was designed to amplify the chemiluminescence (CL) emission of NaClO-H2O2 system. Interestingly, energy donators and acceptors were originated from WS2 QDs in this CRET system. In detail, W (IV) on the interface of WS2 QDS were oxidized to W (VI) by NaClO, and then W (VI) combined with H2O2 to generate in-situ reactive peroxotungstate. The unstable peroxotungstate rapidly decomposed to singlet oxygen (1O2) and then dimerised to (1O2)2* (a dimer of singlet oxygen). WS2 QDS received the energy from (1O2)2* to produce strong luminescence. Based on this mechanism, a new platform for H2O2 determination with high selectivity and sensitivity was proposed and successfully applied to evaluate the photocatalytic properties of five two-dimensional materials by monitoring the photocatalytic H2O2 evolution. This work deepens the understanding of the excellent property of WS2 QDs. More constructively, it provides a novel idea for designing effective CRET and explores its potential application in photocatalytic research. |
abstract_unstemmed |
Water disinfection is a significant process in water treatment. As the widely used disinfection method, sodium hypochlorite (NaClO) disinfection has the potential carcinogenic risk because of its chloramine byproducts. Hence, the green and noncarcinogenic photocatalytic disinfection becomes a new favourite. In photocatalytic disinfection, H2O2 with long lifetime and lasting antibacterial property plays a principal role. Therefore, monitoring H2O2 in this process is imperative and challenging, which facilitated the development of efficient disinfection technique. Herein, a novel homologous chemiluminescence resonance energy transfer (CRET) on the interface of WS2 QDS was designed to amplify the chemiluminescence (CL) emission of NaClO-H2O2 system. Interestingly, energy donators and acceptors were originated from WS2 QDs in this CRET system. In detail, W (IV) on the interface of WS2 QDS were oxidized to W (VI) by NaClO, and then W (VI) combined with H2O2 to generate in-situ reactive peroxotungstate. The unstable peroxotungstate rapidly decomposed to singlet oxygen (1O2) and then dimerised to (1O2)2* (a dimer of singlet oxygen). WS2 QDS received the energy from (1O2)2* to produce strong luminescence. Based on this mechanism, a new platform for H2O2 determination with high selectivity and sensitivity was proposed and successfully applied to evaluate the photocatalytic properties of five two-dimensional materials by monitoring the photocatalytic H2O2 evolution. This work deepens the understanding of the excellent property of WS2 QDs. More constructively, it provides a novel idea for designing effective CRET and explores its potential application in photocatalytic research. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Homologous chemiluminescence resonance energy transfer on the interface of WS 2 quantum dots for monitoring photocatalytic H 2 O 2 evaluation |
remote_bool |
true |
author2 |
Su, Yingying Sun, Mingxia Lv, Yi |
author2Str |
Su, Yingying Sun, Mingxia Lv, Yi |
ppnlink |
267840217 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.microc.2021.106344 |
up_date |
2024-07-06T22:11:00.681Z |
_version_ |
1803869341018488832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV054602866</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240104093504.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.microc.2021.106344</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV054602866</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0026-265X(21)00428-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Tong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homologous chemiluminescence resonance energy transfer on the interface of WS 2 quantum dots for monitoring photocatalytic H 2 O 2 evaluation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Water disinfection is a significant process in water treatment. As the widely used disinfection method, sodium hypochlorite (NaClO) disinfection has the potential carcinogenic risk because of its chloramine byproducts. Hence, the green and noncarcinogenic photocatalytic disinfection becomes a new favourite. In photocatalytic disinfection, H2O2 with long lifetime and lasting antibacterial property plays a principal role. Therefore, monitoring H2O2 in this process is imperative and challenging, which facilitated the development of efficient disinfection technique. Herein, a novel homologous chemiluminescence resonance energy transfer (CRET) on the interface of WS2 QDS was designed to amplify the chemiluminescence (CL) emission of NaClO-H2O2 system. Interestingly, energy donators and acceptors were originated from WS2 QDs in this CRET system. In detail, W (IV) on the interface of WS2 QDS were oxidized to W (VI) by NaClO, and then W (VI) combined with H2O2 to generate in-situ reactive peroxotungstate. The unstable peroxotungstate rapidly decomposed to singlet oxygen (1O2) and then dimerised to (1O2)2* (a dimer of singlet oxygen). WS2 QDS received the energy from (1O2)2* to produce strong luminescence. Based on this mechanism, a new platform for H2O2 determination with high selectivity and sensitivity was proposed and successfully applied to evaluate the photocatalytic properties of five two-dimensional materials by monitoring the photocatalytic H2O2 evolution. This work deepens the understanding of the excellent property of WS2 QDs. More constructively, it provides a novel idea for designing effective CRET and explores its potential application in photocatalytic research.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tungsten disulphide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singlet oxygen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemiluminescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CRET</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Yingying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Mingxia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microchemical journal</subfield><subfield code="d">Orlando, Fla. : Academic Press, 1957</subfield><subfield code="g">168</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)267840217</subfield><subfield code="w">(DE-600)1471165-5</subfield><subfield code="w">(DE-576)259483729</subfield><subfield code="x">1095-9149</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">168</subfield></datafield></record></collection>
|
score |
7.4018965 |