Rapid fabrication of xylan-based hydrogel by graft polymerization via a dynamic lignin-Fe3+ plant catechol system
Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xyla...
Ausführliche Beschreibung
Autor*in: |
Li, Nan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Übergeordnetes Werk: |
Enthalten in: Residue co-evolution helps predict interaction sites in α-helical membrane proteins - Zeng, Bo ELSEVIER, 2019, an international journal devoted to scientific and technological aspects of industrially important polysaccharides, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:269 ; year:2021 ; day:1 ; month:10 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.carbpol.2021.118306 |
---|
Katalog-ID: |
ELV054677157 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV054677157 | ||
003 | DE-627 | ||
005 | 20230626040610.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.carbpol.2021.118306 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001983.pica |
035 | |a (DE-627)ELV054677157 | ||
035 | |a (ELSEVIER)S0144-8617(21)00693-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.13 |2 bkl | ||
100 | 1 | |a Li, Nan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Rapid fabrication of xylan-based hydrogel by graft polymerization via a dynamic lignin-Fe3+ plant catechol system |
264 | 1 | |c 2021transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass. | ||
520 | |a Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass. | ||
700 | 1 | |a Sun, Dan |4 oth | |
700 | 1 | |a Su, Zhenhua |4 oth | |
700 | 1 | |a Hao, Xiang |4 oth | |
700 | 1 | |a Li, Mingfei |4 oth | |
700 | 1 | |a Ren, Junli |4 oth | |
700 | 1 | |a Peng, Feng |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Zeng, Bo ELSEVIER |t Residue co-evolution helps predict interaction sites in α-helical membrane proteins |d 2019 |d an international journal devoted to scientific and technological aspects of industrially important polysaccharides |g Amsterdam [u.a.] |w (DE-627)ELV002183382 |
773 | 1 | 8 | |g volume:269 |g year:2021 |g day:1 |g month:10 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.carbpol.2021.118306 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 42.13 |j Molekularbiologie |q VZ |
951 | |a AR | ||
952 | |d 269 |j 2021 |b 1 |c 1001 |h 0 |
author_variant |
n l nl |
---|---|
matchkey_str |
linansundansuzhenhuahaoxianglimingfeiren:2021----:aifbiainfyabsdyrglyrfplmrztovadnmcin |
hierarchy_sort_str |
2021transfer abstract |
bklnumber |
42.13 |
publishDate |
2021 |
allfields |
10.1016/j.carbpol.2021.118306 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001983.pica (DE-627)ELV054677157 (ELSEVIER)S0144-8617(21)00693-7 DE-627 ger DE-627 rakwb eng 540 VZ BIODIV DE-30 fid 42.13 bkl Li, Nan verfasserin aut Rapid fabrication of xylan-based hydrogel by graft polymerization via a dynamic lignin-Fe3+ plant catechol system 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass. Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass. Sun, Dan oth Su, Zhenhua oth Hao, Xiang oth Li, Mingfei oth Ren, Junli oth Peng, Feng oth Enthalten in Elsevier Science Zeng, Bo ELSEVIER Residue co-evolution helps predict interaction sites in α-helical membrane proteins 2019 an international journal devoted to scientific and technological aspects of industrially important polysaccharides Amsterdam [u.a.] (DE-627)ELV002183382 volume:269 year:2021 day:1 month:10 pages:0 https://doi.org/10.1016/j.carbpol.2021.118306 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 269 2021 1 1001 0 |
spelling |
10.1016/j.carbpol.2021.118306 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001983.pica (DE-627)ELV054677157 (ELSEVIER)S0144-8617(21)00693-7 DE-627 ger DE-627 rakwb eng 540 VZ BIODIV DE-30 fid 42.13 bkl Li, Nan verfasserin aut Rapid fabrication of xylan-based hydrogel by graft polymerization via a dynamic lignin-Fe3+ plant catechol system 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass. Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass. Sun, Dan oth Su, Zhenhua oth Hao, Xiang oth Li, Mingfei oth Ren, Junli oth Peng, Feng oth Enthalten in Elsevier Science Zeng, Bo ELSEVIER Residue co-evolution helps predict interaction sites in α-helical membrane proteins 2019 an international journal devoted to scientific and technological aspects of industrially important polysaccharides Amsterdam [u.a.] (DE-627)ELV002183382 volume:269 year:2021 day:1 month:10 pages:0 https://doi.org/10.1016/j.carbpol.2021.118306 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 269 2021 1 1001 0 |
allfields_unstemmed |
10.1016/j.carbpol.2021.118306 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001983.pica (DE-627)ELV054677157 (ELSEVIER)S0144-8617(21)00693-7 DE-627 ger DE-627 rakwb eng 540 VZ BIODIV DE-30 fid 42.13 bkl Li, Nan verfasserin aut Rapid fabrication of xylan-based hydrogel by graft polymerization via a dynamic lignin-Fe3+ plant catechol system 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass. Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass. Sun, Dan oth Su, Zhenhua oth Hao, Xiang oth Li, Mingfei oth Ren, Junli oth Peng, Feng oth Enthalten in Elsevier Science Zeng, Bo ELSEVIER Residue co-evolution helps predict interaction sites in α-helical membrane proteins 2019 an international journal devoted to scientific and technological aspects of industrially important polysaccharides Amsterdam [u.a.] (DE-627)ELV002183382 volume:269 year:2021 day:1 month:10 pages:0 https://doi.org/10.1016/j.carbpol.2021.118306 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 269 2021 1 1001 0 |
allfieldsGer |
10.1016/j.carbpol.2021.118306 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001983.pica (DE-627)ELV054677157 (ELSEVIER)S0144-8617(21)00693-7 DE-627 ger DE-627 rakwb eng 540 VZ BIODIV DE-30 fid 42.13 bkl Li, Nan verfasserin aut Rapid fabrication of xylan-based hydrogel by graft polymerization via a dynamic lignin-Fe3+ plant catechol system 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass. Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass. Sun, Dan oth Su, Zhenhua oth Hao, Xiang oth Li, Mingfei oth Ren, Junli oth Peng, Feng oth Enthalten in Elsevier Science Zeng, Bo ELSEVIER Residue co-evolution helps predict interaction sites in α-helical membrane proteins 2019 an international journal devoted to scientific and technological aspects of industrially important polysaccharides Amsterdam [u.a.] (DE-627)ELV002183382 volume:269 year:2021 day:1 month:10 pages:0 https://doi.org/10.1016/j.carbpol.2021.118306 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 269 2021 1 1001 0 |
allfieldsSound |
10.1016/j.carbpol.2021.118306 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001983.pica (DE-627)ELV054677157 (ELSEVIER)S0144-8617(21)00693-7 DE-627 ger DE-627 rakwb eng 540 VZ BIODIV DE-30 fid 42.13 bkl Li, Nan verfasserin aut Rapid fabrication of xylan-based hydrogel by graft polymerization via a dynamic lignin-Fe3+ plant catechol system 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass. Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass. Sun, Dan oth Su, Zhenhua oth Hao, Xiang oth Li, Mingfei oth Ren, Junli oth Peng, Feng oth Enthalten in Elsevier Science Zeng, Bo ELSEVIER Residue co-evolution helps predict interaction sites in α-helical membrane proteins 2019 an international journal devoted to scientific and technological aspects of industrially important polysaccharides Amsterdam [u.a.] (DE-627)ELV002183382 volume:269 year:2021 day:1 month:10 pages:0 https://doi.org/10.1016/j.carbpol.2021.118306 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 269 2021 1 1001 0 |
language |
English |
source |
Enthalten in Residue co-evolution helps predict interaction sites in α-helical membrane proteins Amsterdam [u.a.] volume:269 year:2021 day:1 month:10 pages:0 |
sourceStr |
Enthalten in Residue co-evolution helps predict interaction sites in α-helical membrane proteins Amsterdam [u.a.] volume:269 year:2021 day:1 month:10 pages:0 |
format_phy_str_mv |
Article |
bklname |
Molekularbiologie |
institution |
findex.gbv.de |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Residue co-evolution helps predict interaction sites in α-helical membrane proteins |
authorswithroles_txt_mv |
Li, Nan @@aut@@ Sun, Dan @@oth@@ Su, Zhenhua @@oth@@ Hao, Xiang @@oth@@ Li, Mingfei @@oth@@ Ren, Junli @@oth@@ Peng, Feng @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV002183382 |
dewey-sort |
3540 |
id |
ELV054677157 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV054677157</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626040610.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.carbpol.2021.118306</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001983.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV054677157</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0144-8617(21)00693-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Nan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rapid fabrication of xylan-based hydrogel by graft polymerization via a dynamic lignin-Fe3+ plant catechol system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Dan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Zhenhua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Xiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Mingfei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Junli</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Feng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zeng, Bo ELSEVIER</subfield><subfield code="t">Residue co-evolution helps predict interaction sites in α-helical membrane proteins</subfield><subfield code="d">2019</subfield><subfield code="d">an international journal devoted to scientific and technological aspects of industrially important polysaccharides</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV002183382</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:269</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:1</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.carbpol.2021.118306</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.13</subfield><subfield code="j">Molekularbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">269</subfield><subfield code="j">2021</subfield><subfield code="b">1</subfield><subfield code="c">1001</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Li, Nan |
spellingShingle |
Li, Nan ddc 540 fid BIODIV bkl 42.13 Rapid fabrication of xylan-based hydrogel by graft polymerization via a dynamic lignin-Fe3+ plant catechol system |
authorStr |
Li, Nan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002183382 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 VZ BIODIV DE-30 fid 42.13 bkl Rapid fabrication of xylan-based hydrogel by graft polymerization via a dynamic lignin-Fe3+ plant catechol system |
topic |
ddc 540 fid BIODIV bkl 42.13 |
topic_unstemmed |
ddc 540 fid BIODIV bkl 42.13 |
topic_browse |
ddc 540 fid BIODIV bkl 42.13 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
d s ds z s zs x h xh m l ml j r jr f p fp |
hierarchy_parent_title |
Residue co-evolution helps predict interaction sites in α-helical membrane proteins |
hierarchy_parent_id |
ELV002183382 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Residue co-evolution helps predict interaction sites in α-helical membrane proteins |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002183382 |
title |
Rapid fabrication of xylan-based hydrogel by graft polymerization via a dynamic lignin-Fe3+ plant catechol system |
ctrlnum |
(DE-627)ELV054677157 (ELSEVIER)S0144-8617(21)00693-7 |
title_full |
Rapid fabrication of xylan-based hydrogel by graft polymerization via a dynamic lignin-Fe3+ plant catechol system |
author_sort |
Li, Nan |
journal |
Residue co-evolution helps predict interaction sites in α-helical membrane proteins |
journalStr |
Residue co-evolution helps predict interaction sites in α-helical membrane proteins |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Li, Nan |
container_volume |
269 |
class |
540 VZ BIODIV DE-30 fid 42.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Nan |
doi_str_mv |
10.1016/j.carbpol.2021.118306 |
dewey-full |
540 |
title_sort |
rapid fabrication of xylan-based hydrogel by graft polymerization via a dynamic lignin-fe3+ plant catechol system |
title_auth |
Rapid fabrication of xylan-based hydrogel by graft polymerization via a dynamic lignin-Fe3+ plant catechol system |
abstract |
Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass. |
abstractGer |
Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass. |
abstract_unstemmed |
Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
title_short |
Rapid fabrication of xylan-based hydrogel by graft polymerization via a dynamic lignin-Fe3+ plant catechol system |
url |
https://doi.org/10.1016/j.carbpol.2021.118306 |
remote_bool |
true |
author2 |
Sun, Dan Su, Zhenhua Hao, Xiang Li, Mingfei Ren, Junli Peng, Feng |
author2Str |
Sun, Dan Su, Zhenhua Hao, Xiang Li, Mingfei Ren, Junli Peng, Feng |
ppnlink |
ELV002183382 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.carbpol.2021.118306 |
up_date |
2024-07-06T22:23:35.265Z |
_version_ |
1803870132258209792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV054677157</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626040610.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.carbpol.2021.118306</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001983.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV054677157</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0144-8617(21)00693-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Nan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rapid fabrication of xylan-based hydrogel by graft polymerization via a dynamic lignin-Fe3+ plant catechol system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Traditional preparation methods of the hydrogel are not only tedious but also requiring external stimuli. Here, a plant catechol-inspired self-catalytic system (sulfonated lignin and iron ion) has been introduced to rapidly trigger the graft polymerization of vinyl monomers on the carboxymethyl xylan (CMX) at room temperature, generating an elastic, UV-shield, and conductive hydrogel. The rapid preparation process can be finished at room temperature in 5 min without the removal of oxygen. The hydrogel shows charming extension ratio (up to 460%) and tensile stress (up to 23 kPa), which can be ascribed to the double network structure constructed from Fe3+ and CMX. The hydrogel exhibits great transparency (up to 85.37%), fascinating UV-blocking (up to 99%), and conductive features, thereby serving as potential human body sensors. The rapid preparation of xylan-derived hydrogels via dynamic lignin catechol chemistry may open up a new approach to high-valued utilization of biomass.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Dan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Zhenhua</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Xiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Mingfei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Junli</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Feng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zeng, Bo ELSEVIER</subfield><subfield code="t">Residue co-evolution helps predict interaction sites in α-helical membrane proteins</subfield><subfield code="d">2019</subfield><subfield code="d">an international journal devoted to scientific and technological aspects of industrially important polysaccharides</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV002183382</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:269</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:1</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.carbpol.2021.118306</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.13</subfield><subfield code="j">Molekularbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">269</subfield><subfield code="j">2021</subfield><subfield code="b">1</subfield><subfield code="c">1001</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4026995 |