Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace
For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten ir...
Ausführliche Beschreibung
Autor*in: |
Li, Junpeng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
15 |
---|
Übergeordnetes Werk: |
Enthalten in: Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species - Polizzi, P. ELSEVIER, 2017transfer abstract, [S.l.] |
---|---|
Übergeordnetes Werk: |
volume:421 ; year:2021 ; day:30 ; month:09 ; pages:178-192 ; extent:15 |
Links: |
---|
DOI / URN: |
10.1016/j.fss.2020.08.012 |
---|
Katalog-ID: |
ELV054927781 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV054927781 | ||
003 | DE-627 | ||
005 | 20230626040940.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.fss.2020.08.012 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001486.pica |
035 | |a (DE-627)ELV054927781 | ||
035 | |a (ELSEVIER)S0165-0114(20)30318-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 15,3 |2 ssgn | ||
084 | |a PHARM |q DE-84 |2 fid | ||
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Li, Junpeng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace |
264 | 1 | |c 2021transfer abstract | |
300 | |a 15 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data. | ||
520 | |a For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data. | ||
650 | 7 | |a Multi-Input Multi-Output |2 Elsevier | |
650 | 7 | |a Blast furnace |2 Elsevier | |
650 | 7 | |a Silicon content |2 Elsevier | |
650 | 7 | |a Takagi-Sugeno fuzzy model |2 Elsevier | |
650 | 7 | |a Molten iron quality |2 Elsevier | |
700 | 1 | |a Hua, Changchun |4 oth | |
700 | 1 | |a Qian, Junlei |4 oth | |
700 | 1 | |a Guan, Xinping |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Polizzi, P. ELSEVIER |t Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species |d 2017transfer abstract |g [S.l.] |w (DE-627)ELV020637101 |
773 | 1 | 8 | |g volume:421 |g year:2021 |g day:30 |g month:09 |g pages:178-192 |g extent:15 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.fss.2020.08.012 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-PHARM | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_34 | ||
912 | |a GBV_ILN_50 | ||
912 | |a GBV_ILN_55 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_61 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_92 | ||
912 | |a GBV_ILN_104 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_121 | ||
912 | |a GBV_ILN_122 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_131 | ||
912 | |a GBV_ILN_147 | ||
912 | |a GBV_ILN_160 | ||
912 | |a GBV_ILN_179 | ||
912 | |a GBV_ILN_181 | ||
912 | |a GBV_ILN_276 | ||
912 | |a GBV_ILN_737 | ||
912 | |a GBV_ILN_754 | ||
912 | |a GBV_ILN_812 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2023 | ||
912 | |a GBV_ILN_2024 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2032 | ||
912 | |a GBV_ILN_2033 | ||
912 | |a GBV_ILN_2035 | ||
912 | |a GBV_ILN_2040 | ||
912 | |a GBV_ILN_2043 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2084 | ||
912 | |a GBV_ILN_2121 | ||
912 | |a GBV_ILN_2227 | ||
912 | |a GBV_ILN_2502 | ||
912 | |a GBV_ILN_2505 | ||
912 | |a GBV_ILN_2508 | ||
936 | b | k | |a 44.40 |j Pharmazie |j Pharmazeutika |q VZ |
951 | |a AR | ||
952 | |d 421 |j 2021 |b 30 |c 0930 |h 178-192 |g 15 |
author_variant |
j l jl |
---|---|
matchkey_str |
lijunpenghuachangchunqianjunleiguanxinpi:2021----:ornbsdutiptutotutkgsgnfzyoeigopeitoomle |
hierarchy_sort_str |
2021transfer abstract |
bklnumber |
44.40 |
publishDate |
2021 |
allfields |
10.1016/j.fss.2020.08.012 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001486.pica (DE-627)ELV054927781 (ELSEVIER)S0165-0114(20)30318-3 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Li, Junpeng verfasserin aut Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace 2021transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data. For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data. Multi-Input Multi-Output Elsevier Blast furnace Elsevier Silicon content Elsevier Takagi-Sugeno fuzzy model Elsevier Molten iron quality Elsevier Hua, Changchun oth Qian, Junlei oth Guan, Xinping oth Enthalten in Elsevier Polizzi, P. ELSEVIER Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species 2017transfer abstract [S.l.] (DE-627)ELV020637101 volume:421 year:2021 day:30 month:09 pages:178-192 extent:15 https://doi.org/10.1016/j.fss.2020.08.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_50 GBV_ILN_55 GBV_ILN_60 GBV_ILN_61 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_90 GBV_ILN_92 GBV_ILN_104 GBV_ILN_105 GBV_ILN_120 GBV_ILN_121 GBV_ILN_122 GBV_ILN_130 GBV_ILN_131 GBV_ILN_147 GBV_ILN_160 GBV_ILN_179 GBV_ILN_181 GBV_ILN_276 GBV_ILN_737 GBV_ILN_754 GBV_ILN_812 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2023 GBV_ILN_2024 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2032 GBV_ILN_2033 GBV_ILN_2035 GBV_ILN_2040 GBV_ILN_2043 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2065 GBV_ILN_2084 GBV_ILN_2121 GBV_ILN_2227 GBV_ILN_2502 GBV_ILN_2505 GBV_ILN_2508 44.40 Pharmazie Pharmazeutika VZ AR 421 2021 30 0930 178-192 15 |
spelling |
10.1016/j.fss.2020.08.012 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001486.pica (DE-627)ELV054927781 (ELSEVIER)S0165-0114(20)30318-3 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Li, Junpeng verfasserin aut Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace 2021transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data. For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data. Multi-Input Multi-Output Elsevier Blast furnace Elsevier Silicon content Elsevier Takagi-Sugeno fuzzy model Elsevier Molten iron quality Elsevier Hua, Changchun oth Qian, Junlei oth Guan, Xinping oth Enthalten in Elsevier Polizzi, P. ELSEVIER Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species 2017transfer abstract [S.l.] (DE-627)ELV020637101 volume:421 year:2021 day:30 month:09 pages:178-192 extent:15 https://doi.org/10.1016/j.fss.2020.08.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_50 GBV_ILN_55 GBV_ILN_60 GBV_ILN_61 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_90 GBV_ILN_92 GBV_ILN_104 GBV_ILN_105 GBV_ILN_120 GBV_ILN_121 GBV_ILN_122 GBV_ILN_130 GBV_ILN_131 GBV_ILN_147 GBV_ILN_160 GBV_ILN_179 GBV_ILN_181 GBV_ILN_276 GBV_ILN_737 GBV_ILN_754 GBV_ILN_812 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2023 GBV_ILN_2024 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2032 GBV_ILN_2033 GBV_ILN_2035 GBV_ILN_2040 GBV_ILN_2043 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2065 GBV_ILN_2084 GBV_ILN_2121 GBV_ILN_2227 GBV_ILN_2502 GBV_ILN_2505 GBV_ILN_2508 44.40 Pharmazie Pharmazeutika VZ AR 421 2021 30 0930 178-192 15 |
allfields_unstemmed |
10.1016/j.fss.2020.08.012 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001486.pica (DE-627)ELV054927781 (ELSEVIER)S0165-0114(20)30318-3 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Li, Junpeng verfasserin aut Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace 2021transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data. For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data. Multi-Input Multi-Output Elsevier Blast furnace Elsevier Silicon content Elsevier Takagi-Sugeno fuzzy model Elsevier Molten iron quality Elsevier Hua, Changchun oth Qian, Junlei oth Guan, Xinping oth Enthalten in Elsevier Polizzi, P. ELSEVIER Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species 2017transfer abstract [S.l.] (DE-627)ELV020637101 volume:421 year:2021 day:30 month:09 pages:178-192 extent:15 https://doi.org/10.1016/j.fss.2020.08.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_50 GBV_ILN_55 GBV_ILN_60 GBV_ILN_61 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_90 GBV_ILN_92 GBV_ILN_104 GBV_ILN_105 GBV_ILN_120 GBV_ILN_121 GBV_ILN_122 GBV_ILN_130 GBV_ILN_131 GBV_ILN_147 GBV_ILN_160 GBV_ILN_179 GBV_ILN_181 GBV_ILN_276 GBV_ILN_737 GBV_ILN_754 GBV_ILN_812 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2023 GBV_ILN_2024 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2032 GBV_ILN_2033 GBV_ILN_2035 GBV_ILN_2040 GBV_ILN_2043 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2065 GBV_ILN_2084 GBV_ILN_2121 GBV_ILN_2227 GBV_ILN_2502 GBV_ILN_2505 GBV_ILN_2508 44.40 Pharmazie Pharmazeutika VZ AR 421 2021 30 0930 178-192 15 |
allfieldsGer |
10.1016/j.fss.2020.08.012 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001486.pica (DE-627)ELV054927781 (ELSEVIER)S0165-0114(20)30318-3 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Li, Junpeng verfasserin aut Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace 2021transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data. For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data. Multi-Input Multi-Output Elsevier Blast furnace Elsevier Silicon content Elsevier Takagi-Sugeno fuzzy model Elsevier Molten iron quality Elsevier Hua, Changchun oth Qian, Junlei oth Guan, Xinping oth Enthalten in Elsevier Polizzi, P. ELSEVIER Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species 2017transfer abstract [S.l.] (DE-627)ELV020637101 volume:421 year:2021 day:30 month:09 pages:178-192 extent:15 https://doi.org/10.1016/j.fss.2020.08.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_50 GBV_ILN_55 GBV_ILN_60 GBV_ILN_61 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_90 GBV_ILN_92 GBV_ILN_104 GBV_ILN_105 GBV_ILN_120 GBV_ILN_121 GBV_ILN_122 GBV_ILN_130 GBV_ILN_131 GBV_ILN_147 GBV_ILN_160 GBV_ILN_179 GBV_ILN_181 GBV_ILN_276 GBV_ILN_737 GBV_ILN_754 GBV_ILN_812 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2023 GBV_ILN_2024 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2032 GBV_ILN_2033 GBV_ILN_2035 GBV_ILN_2040 GBV_ILN_2043 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2065 GBV_ILN_2084 GBV_ILN_2121 GBV_ILN_2227 GBV_ILN_2502 GBV_ILN_2505 GBV_ILN_2508 44.40 Pharmazie Pharmazeutika VZ AR 421 2021 30 0930 178-192 15 |
allfieldsSound |
10.1016/j.fss.2020.08.012 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001486.pica (DE-627)ELV054927781 (ELSEVIER)S0165-0114(20)30318-3 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Li, Junpeng verfasserin aut Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace 2021transfer abstract 15 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data. For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data. Multi-Input Multi-Output Elsevier Blast furnace Elsevier Silicon content Elsevier Takagi-Sugeno fuzzy model Elsevier Molten iron quality Elsevier Hua, Changchun oth Qian, Junlei oth Guan, Xinping oth Enthalten in Elsevier Polizzi, P. ELSEVIER Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species 2017transfer abstract [S.l.] (DE-627)ELV020637101 volume:421 year:2021 day:30 month:09 pages:178-192 extent:15 https://doi.org/10.1016/j.fss.2020.08.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_50 GBV_ILN_55 GBV_ILN_60 GBV_ILN_61 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_90 GBV_ILN_92 GBV_ILN_104 GBV_ILN_105 GBV_ILN_120 GBV_ILN_121 GBV_ILN_122 GBV_ILN_130 GBV_ILN_131 GBV_ILN_147 GBV_ILN_160 GBV_ILN_179 GBV_ILN_181 GBV_ILN_276 GBV_ILN_737 GBV_ILN_754 GBV_ILN_812 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2023 GBV_ILN_2024 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2032 GBV_ILN_2033 GBV_ILN_2035 GBV_ILN_2040 GBV_ILN_2043 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2065 GBV_ILN_2084 GBV_ILN_2121 GBV_ILN_2227 GBV_ILN_2502 GBV_ILN_2505 GBV_ILN_2508 44.40 Pharmazie Pharmazeutika VZ AR 421 2021 30 0930 178-192 15 |
language |
English |
source |
Enthalten in Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species [S.l.] volume:421 year:2021 day:30 month:09 pages:178-192 extent:15 |
sourceStr |
Enthalten in Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species [S.l.] volume:421 year:2021 day:30 month:09 pages:178-192 extent:15 |
format_phy_str_mv |
Article |
bklname |
Pharmazie Pharmazeutika |
institution |
findex.gbv.de |
topic_facet |
Multi-Input Multi-Output Blast furnace Silicon content Takagi-Sugeno fuzzy model Molten iron quality |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species |
authorswithroles_txt_mv |
Li, Junpeng @@aut@@ Hua, Changchun @@oth@@ Qian, Junlei @@oth@@ Guan, Xinping @@oth@@ |
publishDateDaySort_date |
2021-01-30T00:00:00Z |
hierarchy_top_id |
ELV020637101 |
dewey-sort |
3610 |
id |
ELV054927781 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV054927781</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626040940.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fss.2020.08.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001486.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV054927781</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0165-0114(20)30318-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15,3</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Junpeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multi-Input Multi-Output</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Blast furnace</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Silicon content</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Takagi-Sugeno fuzzy model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Molten iron quality</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hua, Changchun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, Junlei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guan, Xinping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Polizzi, P. ELSEVIER</subfield><subfield code="t">Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species</subfield><subfield code="d">2017transfer abstract</subfield><subfield code="g">[S.l.]</subfield><subfield code="w">(DE-627)ELV020637101</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:421</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:30</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:178-192</subfield><subfield code="g">extent:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.fss.2020.08.012</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_50</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_61</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_92</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_104</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_131</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_160</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_179</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_276</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_737</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_754</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_812</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2023</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2024</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2032</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2033</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2040</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2043</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2084</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2227</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2502</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2505</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2508</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">421</subfield><subfield code="j">2021</subfield><subfield code="b">30</subfield><subfield code="c">0930</subfield><subfield code="h">178-192</subfield><subfield code="g">15</subfield></datafield></record></collection>
|
author |
Li, Junpeng |
spellingShingle |
Li, Junpeng ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Multi-Input Multi-Output Elsevier Blast furnace Elsevier Silicon content Elsevier Takagi-Sugeno fuzzy model Elsevier Molten iron quality Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace |
authorStr |
Li, Junpeng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV020637101 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace Multi-Input Multi-Output Elsevier Blast furnace Elsevier Silicon content Elsevier Takagi-Sugeno fuzzy model Elsevier Molten iron quality Elsevier |
topic |
ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Multi-Input Multi-Output Elsevier Blast furnace Elsevier Silicon content Elsevier Takagi-Sugeno fuzzy model Elsevier Molten iron quality |
topic_unstemmed |
ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Multi-Input Multi-Output Elsevier Blast furnace Elsevier Silicon content Elsevier Takagi-Sugeno fuzzy model Elsevier Molten iron quality |
topic_browse |
ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Multi-Input Multi-Output Elsevier Blast furnace Elsevier Silicon content Elsevier Takagi-Sugeno fuzzy model Elsevier Molten iron quality |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
c h ch j q jq x g xg |
hierarchy_parent_title |
Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species |
hierarchy_parent_id |
ELV020637101 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV020637101 |
title |
Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace |
ctrlnum |
(DE-627)ELV054927781 (ELSEVIER)S0165-0114(20)30318-3 |
title_full |
Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace |
author_sort |
Li, Junpeng |
journal |
Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species |
journalStr |
Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
178 |
author_browse |
Li, Junpeng |
container_volume |
421 |
physical |
15 |
class |
610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Junpeng |
doi_str_mv |
10.1016/j.fss.2020.08.012 |
dewey-full |
610 |
title_sort |
low-rank based multi-input multi-output takagi-sugeno fuzzy modeling for prediction of molten iron quality in blast furnace |
title_auth |
Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace |
abstract |
For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data. |
abstractGer |
For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data. |
abstract_unstemmed |
For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_50 GBV_ILN_55 GBV_ILN_60 GBV_ILN_61 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_90 GBV_ILN_92 GBV_ILN_104 GBV_ILN_105 GBV_ILN_120 GBV_ILN_121 GBV_ILN_122 GBV_ILN_130 GBV_ILN_131 GBV_ILN_147 GBV_ILN_160 GBV_ILN_179 GBV_ILN_181 GBV_ILN_276 GBV_ILN_737 GBV_ILN_754 GBV_ILN_812 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2023 GBV_ILN_2024 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2032 GBV_ILN_2033 GBV_ILN_2035 GBV_ILN_2040 GBV_ILN_2043 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2065 GBV_ILN_2084 GBV_ILN_2121 GBV_ILN_2227 GBV_ILN_2502 GBV_ILN_2505 GBV_ILN_2508 |
title_short |
Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace |
url |
https://doi.org/10.1016/j.fss.2020.08.012 |
remote_bool |
true |
author2 |
Hua, Changchun Qian, Junlei Guan, Xinping |
author2Str |
Hua, Changchun Qian, Junlei Guan, Xinping |
ppnlink |
ELV020637101 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.fss.2020.08.012 |
up_date |
2024-07-06T23:05:32.831Z |
_version_ |
1803872772117495808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV054927781</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626040940.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fss.2020.08.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001486.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV054927781</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0165-0114(20)30318-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15,3</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Junpeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low-rank based Multi-Input Multi-Output Takagi-Sugeno fuzzy modeling for prediction of molten iron quality in blast furnace</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">15</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For complex blast furnace smelting systems with large time delay, accurate prediction of molten iron quality indicators plays an important guiding role in blast furnace control. Recently, some data-driven Multi-Input Multi-Output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature (MIT), silicon content ([Si]), phosphorus content ([P]) and sulfur content ([S]). However, those data-driven MIMO models do not consider the inter-indicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. This paper proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model with taking full account of the inter-indicator correlation. In the novel method, the inter-indicator correlation was explicitly modeled by a low-rank learning in a latent space that overcame the great challenge of jointly determining the fuzzy rules of MIMO T-S model and the inter-indicator correlation. For the corresponding optimization problem, an effective alternating optimization algorithm is presented. The validity of the proposed method is verified by simulation and comparison with some related methods on real blast furnace data.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multi-Input Multi-Output</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Blast furnace</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Silicon content</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Takagi-Sugeno fuzzy model</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Molten iron quality</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hua, Changchun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, Junlei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guan, Xinping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Polizzi, P. ELSEVIER</subfield><subfield code="t">Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species</subfield><subfield code="d">2017transfer abstract</subfield><subfield code="g">[S.l.]</subfield><subfield code="w">(DE-627)ELV020637101</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:421</subfield><subfield code="g">year:2021</subfield><subfield code="g">day:30</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:178-192</subfield><subfield code="g">extent:15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.fss.2020.08.012</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_50</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_61</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_92</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_104</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_131</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_160</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_179</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_276</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_737</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_754</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_812</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2023</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2024</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2032</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2033</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2040</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2043</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2084</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2227</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2502</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2505</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2508</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">421</subfield><subfield code="j">2021</subfield><subfield code="b">30</subfield><subfield code="c">0930</subfield><subfield code="h">178-192</subfield><subfield code="g">15</subfield></datafield></record></collection>
|
score |
7.4014635 |