Tunable electronic and optical properties of new two-dimensional CuCl/GaSe van der Waals heterostructures with the potential for photocatalysis applications
The construction of a heterojunction photocatalyst can enhance the absorption of visible light and reduce the recombination of electrons and holes, which greatly improves the photocatalytic performance, which is also a current research hotspot in the energy field. In this paper, the first-principles...
Ausführliche Beschreibung
Autor*in: |
Li, Huixing [verfasserIn] Xue, Yan [verfasserIn] Zeng, Xiancai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Chemical physics letters - Amsterdam [u.a.] : Elsevier, 1967, 780 |
---|---|
Übergeordnetes Werk: |
volume:780 |
DOI / URN: |
10.1016/j.cplett.2021.138936 |
---|
Katalog-ID: |
ELV055094449 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV055094449 | ||
003 | DE-627 | ||
005 | 20240104093952.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220105s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cplett.2021.138936 |2 doi | |
035 | |a (DE-627)ELV055094449 | ||
035 | |a (ELSEVIER)S0009-2614(21)00619-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.10 |2 bkl | ||
100 | 1 | |a Li, Huixing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Tunable electronic and optical properties of new two-dimensional CuCl/GaSe van der Waals heterostructures with the potential for photocatalysis applications |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The construction of a heterojunction photocatalyst can enhance the absorption of visible light and reduce the recombination of electrons and holes, which greatly improves the photocatalytic performance, which is also a current research hotspot in the energy field. In this paper, the first-principles calculation method is used to systematically study the electronic structure and photocatalytic mechanism of the new CuCl/GaSe van der Waals (vdW) heterojunction. The main research contents are summarized as follows: CuCl/GaSe vdW heterojunction is a direct band gap semiconductor material with a lattice mismatch rate of less than 1.5%, and a stable structure. The band gap of the heterojunction is 1.143 e V, which corresponds to a wider visible light absorption range. And it shows direct energy band alignment. The photo-generated holes are transferred from the GaSe layer to the CuCl layer, while the electrons are on the contrary, indicating that the electrons and holes are well separated in space. All these indicate that the CuCl/GaSe vdW heterojunction has good photocatalytic performance and is a new type of photocatalytic material with excellent performance. | ||
650 | 4 | |a Electronic structure | |
650 | 4 | |a First principles study | |
650 | 4 | |a Optics properties | |
650 | 4 | |a CuCl/GaSe | |
650 | 4 | |a Work function | |
650 | 4 | |a Photocatalysis | |
700 | 1 | |a Xue, Yan |e verfasserin |4 aut | |
700 | 1 | |a Zeng, Xiancai |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Chemical physics letters |d Amsterdam [u.a.] : Elsevier, 1967 |g 780 |h Online-Ressource |w (DE-627)265783704 |w (DE-600)1466293-0 |w (DE-576)074890905 |7 nnns |
773 | 1 | 8 | |g volume:780 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 35.10 |j Physikalische Chemie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 780 |
author_variant |
h l hl y x yx x z xz |
---|---|
matchkey_str |
lihuixingxueyanzengxiancai:2021----:ualeetoiadpiapoeteonwwdmninlulaeadralhtrsrcuewtteoe |
hierarchy_sort_str |
2021 |
bklnumber |
35.10 |
publishDate |
2021 |
allfields |
10.1016/j.cplett.2021.138936 doi (DE-627)ELV055094449 (ELSEVIER)S0009-2614(21)00619-9 DE-627 ger DE-627 rda eng 540 VZ 35.10 bkl Li, Huixing verfasserin aut Tunable electronic and optical properties of new two-dimensional CuCl/GaSe van der Waals heterostructures with the potential for photocatalysis applications 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The construction of a heterojunction photocatalyst can enhance the absorption of visible light and reduce the recombination of electrons and holes, which greatly improves the photocatalytic performance, which is also a current research hotspot in the energy field. In this paper, the first-principles calculation method is used to systematically study the electronic structure and photocatalytic mechanism of the new CuCl/GaSe van der Waals (vdW) heterojunction. The main research contents are summarized as follows: CuCl/GaSe vdW heterojunction is a direct band gap semiconductor material with a lattice mismatch rate of less than 1.5%, and a stable structure. The band gap of the heterojunction is 1.143 e V, which corresponds to a wider visible light absorption range. And it shows direct energy band alignment. The photo-generated holes are transferred from the GaSe layer to the CuCl layer, while the electrons are on the contrary, indicating that the electrons and holes are well separated in space. All these indicate that the CuCl/GaSe vdW heterojunction has good photocatalytic performance and is a new type of photocatalytic material with excellent performance. Electronic structure First principles study Optics properties CuCl/GaSe Work function Photocatalysis Xue, Yan verfasserin aut Zeng, Xiancai verfasserin aut Enthalten in Chemical physics letters Amsterdam [u.a.] : Elsevier, 1967 780 Online-Ressource (DE-627)265783704 (DE-600)1466293-0 (DE-576)074890905 nnns volume:780 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.10 Physikalische Chemie: Allgemeines VZ AR 780 |
spelling |
10.1016/j.cplett.2021.138936 doi (DE-627)ELV055094449 (ELSEVIER)S0009-2614(21)00619-9 DE-627 ger DE-627 rda eng 540 VZ 35.10 bkl Li, Huixing verfasserin aut Tunable electronic and optical properties of new two-dimensional CuCl/GaSe van der Waals heterostructures with the potential for photocatalysis applications 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The construction of a heterojunction photocatalyst can enhance the absorption of visible light and reduce the recombination of electrons and holes, which greatly improves the photocatalytic performance, which is also a current research hotspot in the energy field. In this paper, the first-principles calculation method is used to systematically study the electronic structure and photocatalytic mechanism of the new CuCl/GaSe van der Waals (vdW) heterojunction. The main research contents are summarized as follows: CuCl/GaSe vdW heterojunction is a direct band gap semiconductor material with a lattice mismatch rate of less than 1.5%, and a stable structure. The band gap of the heterojunction is 1.143 e V, which corresponds to a wider visible light absorption range. And it shows direct energy band alignment. The photo-generated holes are transferred from the GaSe layer to the CuCl layer, while the electrons are on the contrary, indicating that the electrons and holes are well separated in space. All these indicate that the CuCl/GaSe vdW heterojunction has good photocatalytic performance and is a new type of photocatalytic material with excellent performance. Electronic structure First principles study Optics properties CuCl/GaSe Work function Photocatalysis Xue, Yan verfasserin aut Zeng, Xiancai verfasserin aut Enthalten in Chemical physics letters Amsterdam [u.a.] : Elsevier, 1967 780 Online-Ressource (DE-627)265783704 (DE-600)1466293-0 (DE-576)074890905 nnns volume:780 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.10 Physikalische Chemie: Allgemeines VZ AR 780 |
allfields_unstemmed |
10.1016/j.cplett.2021.138936 doi (DE-627)ELV055094449 (ELSEVIER)S0009-2614(21)00619-9 DE-627 ger DE-627 rda eng 540 VZ 35.10 bkl Li, Huixing verfasserin aut Tunable electronic and optical properties of new two-dimensional CuCl/GaSe van der Waals heterostructures with the potential for photocatalysis applications 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The construction of a heterojunction photocatalyst can enhance the absorption of visible light and reduce the recombination of electrons and holes, which greatly improves the photocatalytic performance, which is also a current research hotspot in the energy field. In this paper, the first-principles calculation method is used to systematically study the electronic structure and photocatalytic mechanism of the new CuCl/GaSe van der Waals (vdW) heterojunction. The main research contents are summarized as follows: CuCl/GaSe vdW heterojunction is a direct band gap semiconductor material with a lattice mismatch rate of less than 1.5%, and a stable structure. The band gap of the heterojunction is 1.143 e V, which corresponds to a wider visible light absorption range. And it shows direct energy band alignment. The photo-generated holes are transferred from the GaSe layer to the CuCl layer, while the electrons are on the contrary, indicating that the electrons and holes are well separated in space. All these indicate that the CuCl/GaSe vdW heterojunction has good photocatalytic performance and is a new type of photocatalytic material with excellent performance. Electronic structure First principles study Optics properties CuCl/GaSe Work function Photocatalysis Xue, Yan verfasserin aut Zeng, Xiancai verfasserin aut Enthalten in Chemical physics letters Amsterdam [u.a.] : Elsevier, 1967 780 Online-Ressource (DE-627)265783704 (DE-600)1466293-0 (DE-576)074890905 nnns volume:780 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.10 Physikalische Chemie: Allgemeines VZ AR 780 |
allfieldsGer |
10.1016/j.cplett.2021.138936 doi (DE-627)ELV055094449 (ELSEVIER)S0009-2614(21)00619-9 DE-627 ger DE-627 rda eng 540 VZ 35.10 bkl Li, Huixing verfasserin aut Tunable electronic and optical properties of new two-dimensional CuCl/GaSe van der Waals heterostructures with the potential for photocatalysis applications 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The construction of a heterojunction photocatalyst can enhance the absorption of visible light and reduce the recombination of electrons and holes, which greatly improves the photocatalytic performance, which is also a current research hotspot in the energy field. In this paper, the first-principles calculation method is used to systematically study the electronic structure and photocatalytic mechanism of the new CuCl/GaSe van der Waals (vdW) heterojunction. The main research contents are summarized as follows: CuCl/GaSe vdW heterojunction is a direct band gap semiconductor material with a lattice mismatch rate of less than 1.5%, and a stable structure. The band gap of the heterojunction is 1.143 e V, which corresponds to a wider visible light absorption range. And it shows direct energy band alignment. The photo-generated holes are transferred from the GaSe layer to the CuCl layer, while the electrons are on the contrary, indicating that the electrons and holes are well separated in space. All these indicate that the CuCl/GaSe vdW heterojunction has good photocatalytic performance and is a new type of photocatalytic material with excellent performance. Electronic structure First principles study Optics properties CuCl/GaSe Work function Photocatalysis Xue, Yan verfasserin aut Zeng, Xiancai verfasserin aut Enthalten in Chemical physics letters Amsterdam [u.a.] : Elsevier, 1967 780 Online-Ressource (DE-627)265783704 (DE-600)1466293-0 (DE-576)074890905 nnns volume:780 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.10 Physikalische Chemie: Allgemeines VZ AR 780 |
allfieldsSound |
10.1016/j.cplett.2021.138936 doi (DE-627)ELV055094449 (ELSEVIER)S0009-2614(21)00619-9 DE-627 ger DE-627 rda eng 540 VZ 35.10 bkl Li, Huixing verfasserin aut Tunable electronic and optical properties of new two-dimensional CuCl/GaSe van der Waals heterostructures with the potential for photocatalysis applications 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The construction of a heterojunction photocatalyst can enhance the absorption of visible light and reduce the recombination of electrons and holes, which greatly improves the photocatalytic performance, which is also a current research hotspot in the energy field. In this paper, the first-principles calculation method is used to systematically study the electronic structure and photocatalytic mechanism of the new CuCl/GaSe van der Waals (vdW) heterojunction. The main research contents are summarized as follows: CuCl/GaSe vdW heterojunction is a direct band gap semiconductor material with a lattice mismatch rate of less than 1.5%, and a stable structure. The band gap of the heterojunction is 1.143 e V, which corresponds to a wider visible light absorption range. And it shows direct energy band alignment. The photo-generated holes are transferred from the GaSe layer to the CuCl layer, while the electrons are on the contrary, indicating that the electrons and holes are well separated in space. All these indicate that the CuCl/GaSe vdW heterojunction has good photocatalytic performance and is a new type of photocatalytic material with excellent performance. Electronic structure First principles study Optics properties CuCl/GaSe Work function Photocatalysis Xue, Yan verfasserin aut Zeng, Xiancai verfasserin aut Enthalten in Chemical physics letters Amsterdam [u.a.] : Elsevier, 1967 780 Online-Ressource (DE-627)265783704 (DE-600)1466293-0 (DE-576)074890905 nnns volume:780 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.10 Physikalische Chemie: Allgemeines VZ AR 780 |
language |
English |
source |
Enthalten in Chemical physics letters 780 volume:780 |
sourceStr |
Enthalten in Chemical physics letters 780 volume:780 |
format_phy_str_mv |
Article |
bklname |
Physikalische Chemie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Electronic structure First principles study Optics properties CuCl/GaSe Work function Photocatalysis |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Chemical physics letters |
authorswithroles_txt_mv |
Li, Huixing @@aut@@ Xue, Yan @@aut@@ Zeng, Xiancai @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
265783704 |
dewey-sort |
3540 |
id |
ELV055094449 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055094449</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240104093952.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cplett.2021.138936</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055094449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0009-2614(21)00619-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Huixing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tunable electronic and optical properties of new two-dimensional CuCl/GaSe van der Waals heterostructures with the potential for photocatalysis applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The construction of a heterojunction photocatalyst can enhance the absorption of visible light and reduce the recombination of electrons and holes, which greatly improves the photocatalytic performance, which is also a current research hotspot in the energy field. In this paper, the first-principles calculation method is used to systematically study the electronic structure and photocatalytic mechanism of the new CuCl/GaSe van der Waals (vdW) heterojunction. The main research contents are summarized as follows: CuCl/GaSe vdW heterojunction is a direct band gap semiconductor material with a lattice mismatch rate of less than 1.5%, and a stable structure. The band gap of the heterojunction is 1.143 e V, which corresponds to a wider visible light absorption range. And it shows direct energy band alignment. The photo-generated holes are transferred from the GaSe layer to the CuCl layer, while the electrons are on the contrary, indicating that the electrons and holes are well separated in space. All these indicate that the CuCl/GaSe vdW heterojunction has good photocatalytic performance and is a new type of photocatalytic material with excellent performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">First principles study</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optics properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CuCl/GaSe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Work function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xue, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Xiancai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical physics letters</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1967</subfield><subfield code="g">780</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)265783704</subfield><subfield code="w">(DE-600)1466293-0</subfield><subfield code="w">(DE-576)074890905</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:780</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.10</subfield><subfield code="j">Physikalische Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">780</subfield></datafield></record></collection>
|
author |
Li, Huixing |
spellingShingle |
Li, Huixing ddc 540 bkl 35.10 misc Electronic structure misc First principles study misc Optics properties misc CuCl/GaSe misc Work function misc Photocatalysis Tunable electronic and optical properties of new two-dimensional CuCl/GaSe van der Waals heterostructures with the potential for photocatalysis applications |
authorStr |
Li, Huixing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)265783704 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 VZ 35.10 bkl Tunable electronic and optical properties of new two-dimensional CuCl/GaSe van der Waals heterostructures with the potential for photocatalysis applications Electronic structure First principles study Optics properties CuCl/GaSe Work function Photocatalysis |
topic |
ddc 540 bkl 35.10 misc Electronic structure misc First principles study misc Optics properties misc CuCl/GaSe misc Work function misc Photocatalysis |
topic_unstemmed |
ddc 540 bkl 35.10 misc Electronic structure misc First principles study misc Optics properties misc CuCl/GaSe misc Work function misc Photocatalysis |
topic_browse |
ddc 540 bkl 35.10 misc Electronic structure misc First principles study misc Optics properties misc CuCl/GaSe misc Work function misc Photocatalysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chemical physics letters |
hierarchy_parent_id |
265783704 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Chemical physics letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)265783704 (DE-600)1466293-0 (DE-576)074890905 |
title |
Tunable electronic and optical properties of new two-dimensional CuCl/GaSe van der Waals heterostructures with the potential for photocatalysis applications |
ctrlnum |
(DE-627)ELV055094449 (ELSEVIER)S0009-2614(21)00619-9 |
title_full |
Tunable electronic and optical properties of new two-dimensional CuCl/GaSe van der Waals heterostructures with the potential for photocatalysis applications |
author_sort |
Li, Huixing |
journal |
Chemical physics letters |
journalStr |
Chemical physics letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Li, Huixing Xue, Yan Zeng, Xiancai |
container_volume |
780 |
class |
540 VZ 35.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Huixing |
doi_str_mv |
10.1016/j.cplett.2021.138936 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
tunable electronic and optical properties of new two-dimensional cucl/gase van der waals heterostructures with the potential for photocatalysis applications |
title_auth |
Tunable electronic and optical properties of new two-dimensional CuCl/GaSe van der Waals heterostructures with the potential for photocatalysis applications |
abstract |
The construction of a heterojunction photocatalyst can enhance the absorption of visible light and reduce the recombination of electrons and holes, which greatly improves the photocatalytic performance, which is also a current research hotspot in the energy field. In this paper, the first-principles calculation method is used to systematically study the electronic structure and photocatalytic mechanism of the new CuCl/GaSe van der Waals (vdW) heterojunction. The main research contents are summarized as follows: CuCl/GaSe vdW heterojunction is a direct band gap semiconductor material with a lattice mismatch rate of less than 1.5%, and a stable structure. The band gap of the heterojunction is 1.143 e V, which corresponds to a wider visible light absorption range. And it shows direct energy band alignment. The photo-generated holes are transferred from the GaSe layer to the CuCl layer, while the electrons are on the contrary, indicating that the electrons and holes are well separated in space. All these indicate that the CuCl/GaSe vdW heterojunction has good photocatalytic performance and is a new type of photocatalytic material with excellent performance. |
abstractGer |
The construction of a heterojunction photocatalyst can enhance the absorption of visible light and reduce the recombination of electrons and holes, which greatly improves the photocatalytic performance, which is also a current research hotspot in the energy field. In this paper, the first-principles calculation method is used to systematically study the electronic structure and photocatalytic mechanism of the new CuCl/GaSe van der Waals (vdW) heterojunction. The main research contents are summarized as follows: CuCl/GaSe vdW heterojunction is a direct band gap semiconductor material with a lattice mismatch rate of less than 1.5%, and a stable structure. The band gap of the heterojunction is 1.143 e V, which corresponds to a wider visible light absorption range. And it shows direct energy band alignment. The photo-generated holes are transferred from the GaSe layer to the CuCl layer, while the electrons are on the contrary, indicating that the electrons and holes are well separated in space. All these indicate that the CuCl/GaSe vdW heterojunction has good photocatalytic performance and is a new type of photocatalytic material with excellent performance. |
abstract_unstemmed |
The construction of a heterojunction photocatalyst can enhance the absorption of visible light and reduce the recombination of electrons and holes, which greatly improves the photocatalytic performance, which is also a current research hotspot in the energy field. In this paper, the first-principles calculation method is used to systematically study the electronic structure and photocatalytic mechanism of the new CuCl/GaSe van der Waals (vdW) heterojunction. The main research contents are summarized as follows: CuCl/GaSe vdW heterojunction is a direct band gap semiconductor material with a lattice mismatch rate of less than 1.5%, and a stable structure. The band gap of the heterojunction is 1.143 e V, which corresponds to a wider visible light absorption range. And it shows direct energy band alignment. The photo-generated holes are transferred from the GaSe layer to the CuCl layer, while the electrons are on the contrary, indicating that the electrons and holes are well separated in space. All these indicate that the CuCl/GaSe vdW heterojunction has good photocatalytic performance and is a new type of photocatalytic material with excellent performance. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Tunable electronic and optical properties of new two-dimensional CuCl/GaSe van der Waals heterostructures with the potential for photocatalysis applications |
remote_bool |
true |
author2 |
Xue, Yan Zeng, Xiancai |
author2Str |
Xue, Yan Zeng, Xiancai |
ppnlink |
265783704 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cplett.2021.138936 |
up_date |
2024-07-06T16:35:52.042Z |
_version_ |
1803848255586435072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055094449</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240104093952.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cplett.2021.138936</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055094449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0009-2614(21)00619-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Huixing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tunable electronic and optical properties of new two-dimensional CuCl/GaSe van der Waals heterostructures with the potential for photocatalysis applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The construction of a heterojunction photocatalyst can enhance the absorption of visible light and reduce the recombination of electrons and holes, which greatly improves the photocatalytic performance, which is also a current research hotspot in the energy field. In this paper, the first-principles calculation method is used to systematically study the electronic structure and photocatalytic mechanism of the new CuCl/GaSe van der Waals (vdW) heterojunction. The main research contents are summarized as follows: CuCl/GaSe vdW heterojunction is a direct band gap semiconductor material with a lattice mismatch rate of less than 1.5%, and a stable structure. The band gap of the heterojunction is 1.143 e V, which corresponds to a wider visible light absorption range. And it shows direct energy band alignment. The photo-generated holes are transferred from the GaSe layer to the CuCl layer, while the electrons are on the contrary, indicating that the electrons and holes are well separated in space. All these indicate that the CuCl/GaSe vdW heterojunction has good photocatalytic performance and is a new type of photocatalytic material with excellent performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">First principles study</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optics properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CuCl/GaSe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Work function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xue, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Xiancai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical physics letters</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1967</subfield><subfield code="g">780</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)265783704</subfield><subfield code="w">(DE-600)1466293-0</subfield><subfield code="w">(DE-576)074890905</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:780</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.10</subfield><subfield code="j">Physikalische Chemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">780</subfield></datafield></record></collection>
|
score |
7.4007835 |