Design and analysis of a flat gain and linear low noise amplifier using modified current reused structure with feedforward structure
In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is ut...
Ausführliche Beschreibung
Autor*in: |
Kazemi, Amir Hossein [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
14 |
---|
Übergeordnetes Werk: |
Enthalten in: Functional evaluation of vandetanib metabolism by CYP3A4 variants and potential drug interactions - Han, Mingming ELSEVIER, 2021, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:81 ; year:2021 ; pages:123-136 ; extent:14 |
Links: |
---|
DOI / URN: |
10.1016/j.vlsi.2021.05.013 |
---|
Katalog-ID: |
ELV055225632 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV055225632 | ||
003 | DE-627 | ||
005 | 20230626041414.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220105s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.vlsi.2021.05.013 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001509.pica |
035 | |a (DE-627)ELV055225632 | ||
035 | |a (ELSEVIER)S0167-9260(21)00078-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 540 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a PHARM |q DE-84 |2 fid | ||
084 | |a 35.70 |2 bkl | ||
084 | |a 44.39 |2 bkl | ||
100 | 1 | |a Kazemi, Amir Hossein |e verfasserin |4 aut | |
245 | 1 | 0 | |a Design and analysis of a flat gain and linear low noise amplifier using modified current reused structure with feedforward structure |
264 | 1 | |c 2021transfer abstract | |
300 | |a 14 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology. | ||
520 | |a In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology. | ||
650 | 7 | |a Feedforward structure |2 Elsevier | |
650 | 7 | |a Current reuse technique |2 Elsevier | |
650 | 7 | |a Low noise amplifier |2 Elsevier | |
650 | 7 | |a Shunt feedback |2 Elsevier | |
700 | 1 | |a Hayati, Mohsen |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Han, Mingming ELSEVIER |t Functional evaluation of vandetanib metabolism by CYP3A4 variants and potential drug interactions |d 2021 |g Amsterdam [u.a.] |w (DE-627)ELV006836798 |
773 | 1 | 8 | |g volume:81 |g year:2021 |g pages:123-136 |g extent:14 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.vlsi.2021.05.013 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a FID-PHARM | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
936 | b | k | |a 35.70 |j Biochemie: Allgemeines |q VZ |
936 | b | k | |a 44.39 |j Toxikologie |q VZ |
951 | |a AR | ||
952 | |d 81 |j 2021 |h 123-136 |g 14 |
author_variant |
a h k ah ahk |
---|---|
matchkey_str |
kazemiamirhosseinhayatimohsen:2021----:einnaayioaltannlnalwosapiirsnmdfecretesdtu |
hierarchy_sort_str |
2021transfer abstract |
bklnumber |
35.70 44.39 |
publishDate |
2021 |
allfields |
10.1016/j.vlsi.2021.05.013 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001509.pica (DE-627)ELV055225632 (ELSEVIER)S0167-9260(21)00078-X DE-627 ger DE-627 rakwb eng 570 540 VZ BIODIV DE-30 fid PHARM DE-84 fid 35.70 bkl 44.39 bkl Kazemi, Amir Hossein verfasserin aut Design and analysis of a flat gain and linear low noise amplifier using modified current reused structure with feedforward structure 2021transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology. In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology. Feedforward structure Elsevier Current reuse technique Elsevier Low noise amplifier Elsevier Shunt feedback Elsevier Hayati, Mohsen oth Enthalten in Elsevier Science Han, Mingming ELSEVIER Functional evaluation of vandetanib metabolism by CYP3A4 variants and potential drug interactions 2021 Amsterdam [u.a.] (DE-627)ELV006836798 volume:81 year:2021 pages:123-136 extent:14 https://doi.org/10.1016/j.vlsi.2021.05.013 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 35.70 Biochemie: Allgemeines VZ 44.39 Toxikologie VZ AR 81 2021 123-136 14 |
spelling |
10.1016/j.vlsi.2021.05.013 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001509.pica (DE-627)ELV055225632 (ELSEVIER)S0167-9260(21)00078-X DE-627 ger DE-627 rakwb eng 570 540 VZ BIODIV DE-30 fid PHARM DE-84 fid 35.70 bkl 44.39 bkl Kazemi, Amir Hossein verfasserin aut Design and analysis of a flat gain and linear low noise amplifier using modified current reused structure with feedforward structure 2021transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology. In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology. Feedforward structure Elsevier Current reuse technique Elsevier Low noise amplifier Elsevier Shunt feedback Elsevier Hayati, Mohsen oth Enthalten in Elsevier Science Han, Mingming ELSEVIER Functional evaluation of vandetanib metabolism by CYP3A4 variants and potential drug interactions 2021 Amsterdam [u.a.] (DE-627)ELV006836798 volume:81 year:2021 pages:123-136 extent:14 https://doi.org/10.1016/j.vlsi.2021.05.013 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 35.70 Biochemie: Allgemeines VZ 44.39 Toxikologie VZ AR 81 2021 123-136 14 |
allfields_unstemmed |
10.1016/j.vlsi.2021.05.013 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001509.pica (DE-627)ELV055225632 (ELSEVIER)S0167-9260(21)00078-X DE-627 ger DE-627 rakwb eng 570 540 VZ BIODIV DE-30 fid PHARM DE-84 fid 35.70 bkl 44.39 bkl Kazemi, Amir Hossein verfasserin aut Design and analysis of a flat gain and linear low noise amplifier using modified current reused structure with feedforward structure 2021transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology. In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology. Feedforward structure Elsevier Current reuse technique Elsevier Low noise amplifier Elsevier Shunt feedback Elsevier Hayati, Mohsen oth Enthalten in Elsevier Science Han, Mingming ELSEVIER Functional evaluation of vandetanib metabolism by CYP3A4 variants and potential drug interactions 2021 Amsterdam [u.a.] (DE-627)ELV006836798 volume:81 year:2021 pages:123-136 extent:14 https://doi.org/10.1016/j.vlsi.2021.05.013 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 35.70 Biochemie: Allgemeines VZ 44.39 Toxikologie VZ AR 81 2021 123-136 14 |
allfieldsGer |
10.1016/j.vlsi.2021.05.013 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001509.pica (DE-627)ELV055225632 (ELSEVIER)S0167-9260(21)00078-X DE-627 ger DE-627 rakwb eng 570 540 VZ BIODIV DE-30 fid PHARM DE-84 fid 35.70 bkl 44.39 bkl Kazemi, Amir Hossein verfasserin aut Design and analysis of a flat gain and linear low noise amplifier using modified current reused structure with feedforward structure 2021transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology. In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology. Feedforward structure Elsevier Current reuse technique Elsevier Low noise amplifier Elsevier Shunt feedback Elsevier Hayati, Mohsen oth Enthalten in Elsevier Science Han, Mingming ELSEVIER Functional evaluation of vandetanib metabolism by CYP3A4 variants and potential drug interactions 2021 Amsterdam [u.a.] (DE-627)ELV006836798 volume:81 year:2021 pages:123-136 extent:14 https://doi.org/10.1016/j.vlsi.2021.05.013 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 35.70 Biochemie: Allgemeines VZ 44.39 Toxikologie VZ AR 81 2021 123-136 14 |
allfieldsSound |
10.1016/j.vlsi.2021.05.013 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001509.pica (DE-627)ELV055225632 (ELSEVIER)S0167-9260(21)00078-X DE-627 ger DE-627 rakwb eng 570 540 VZ BIODIV DE-30 fid PHARM DE-84 fid 35.70 bkl 44.39 bkl Kazemi, Amir Hossein verfasserin aut Design and analysis of a flat gain and linear low noise amplifier using modified current reused structure with feedforward structure 2021transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology. In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology. Feedforward structure Elsevier Current reuse technique Elsevier Low noise amplifier Elsevier Shunt feedback Elsevier Hayati, Mohsen oth Enthalten in Elsevier Science Han, Mingming ELSEVIER Functional evaluation of vandetanib metabolism by CYP3A4 variants and potential drug interactions 2021 Amsterdam [u.a.] (DE-627)ELV006836798 volume:81 year:2021 pages:123-136 extent:14 https://doi.org/10.1016/j.vlsi.2021.05.013 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA 35.70 Biochemie: Allgemeines VZ 44.39 Toxikologie VZ AR 81 2021 123-136 14 |
language |
English |
source |
Enthalten in Functional evaluation of vandetanib metabolism by CYP3A4 variants and potential drug interactions Amsterdam [u.a.] volume:81 year:2021 pages:123-136 extent:14 |
sourceStr |
Enthalten in Functional evaluation of vandetanib metabolism by CYP3A4 variants and potential drug interactions Amsterdam [u.a.] volume:81 year:2021 pages:123-136 extent:14 |
format_phy_str_mv |
Article |
bklname |
Biochemie: Allgemeines Toxikologie |
institution |
findex.gbv.de |
topic_facet |
Feedforward structure Current reuse technique Low noise amplifier Shunt feedback |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Functional evaluation of vandetanib metabolism by CYP3A4 variants and potential drug interactions |
authorswithroles_txt_mv |
Kazemi, Amir Hossein @@aut@@ Hayati, Mohsen @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV006836798 |
dewey-sort |
3570 |
id |
ELV055225632 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055225632</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626041414.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.vlsi.2021.05.013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001509.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055225632</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-9260(21)00078-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.39</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kazemi, Amir Hossein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design and analysis of a flat gain and linear low noise amplifier using modified current reused structure with feedforward structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feedforward structure</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Current reuse technique</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Low noise amplifier</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shunt feedback</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hayati, Mohsen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Han, Mingming ELSEVIER</subfield><subfield code="t">Functional evaluation of vandetanib metabolism by CYP3A4 variants and potential drug interactions</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006836798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:81</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:123-136</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.vlsi.2021.05.013</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.39</subfield><subfield code="j">Toxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">81</subfield><subfield code="j">2021</subfield><subfield code="h">123-136</subfield><subfield code="g">14</subfield></datafield></record></collection>
|
author |
Kazemi, Amir Hossein |
spellingShingle |
Kazemi, Amir Hossein ddc 570 fid BIODIV fid PHARM bkl 35.70 bkl 44.39 Elsevier Feedforward structure Elsevier Current reuse technique Elsevier Low noise amplifier Elsevier Shunt feedback Design and analysis of a flat gain and linear low noise amplifier using modified current reused structure with feedforward structure |
authorStr |
Kazemi, Amir Hossein |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006836798 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 540 VZ BIODIV DE-30 fid PHARM DE-84 fid 35.70 bkl 44.39 bkl Design and analysis of a flat gain and linear low noise amplifier using modified current reused structure with feedforward structure Feedforward structure Elsevier Current reuse technique Elsevier Low noise amplifier Elsevier Shunt feedback Elsevier |
topic |
ddc 570 fid BIODIV fid PHARM bkl 35.70 bkl 44.39 Elsevier Feedforward structure Elsevier Current reuse technique Elsevier Low noise amplifier Elsevier Shunt feedback |
topic_unstemmed |
ddc 570 fid BIODIV fid PHARM bkl 35.70 bkl 44.39 Elsevier Feedforward structure Elsevier Current reuse technique Elsevier Low noise amplifier Elsevier Shunt feedback |
topic_browse |
ddc 570 fid BIODIV fid PHARM bkl 35.70 bkl 44.39 Elsevier Feedforward structure Elsevier Current reuse technique Elsevier Low noise amplifier Elsevier Shunt feedback |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m h mh |
hierarchy_parent_title |
Functional evaluation of vandetanib metabolism by CYP3A4 variants and potential drug interactions |
hierarchy_parent_id |
ELV006836798 |
dewey-tens |
570 - Life sciences; biology 540 - Chemistry |
hierarchy_top_title |
Functional evaluation of vandetanib metabolism by CYP3A4 variants and potential drug interactions |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006836798 |
title |
Design and analysis of a flat gain and linear low noise amplifier using modified current reused structure with feedforward structure |
ctrlnum |
(DE-627)ELV055225632 (ELSEVIER)S0167-9260(21)00078-X |
title_full |
Design and analysis of a flat gain and linear low noise amplifier using modified current reused structure with feedforward structure |
author_sort |
Kazemi, Amir Hossein |
journal |
Functional evaluation of vandetanib metabolism by CYP3A4 variants and potential drug interactions |
journalStr |
Functional evaluation of vandetanib metabolism by CYP3A4 variants and potential drug interactions |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
123 |
author_browse |
Kazemi, Amir Hossein |
container_volume |
81 |
physical |
14 |
class |
570 540 VZ BIODIV DE-30 fid PHARM DE-84 fid 35.70 bkl 44.39 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kazemi, Amir Hossein |
doi_str_mv |
10.1016/j.vlsi.2021.05.013 |
dewey-full |
570 540 |
title_sort |
design and analysis of a flat gain and linear low noise amplifier using modified current reused structure with feedforward structure |
title_auth |
Design and analysis of a flat gain and linear low noise amplifier using modified current reused structure with feedforward structure |
abstract |
In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology. |
abstractGer |
In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology. |
abstract_unstemmed |
In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA |
title_short |
Design and analysis of a flat gain and linear low noise amplifier using modified current reused structure with feedforward structure |
url |
https://doi.org/10.1016/j.vlsi.2021.05.013 |
remote_bool |
true |
author2 |
Hayati, Mohsen |
author2Str |
Hayati, Mohsen |
ppnlink |
ELV006836798 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.vlsi.2021.05.013 |
up_date |
2024-07-06T16:58:13.308Z |
_version_ |
1803849662004723712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055225632</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626041414.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.vlsi.2021.05.013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001509.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055225632</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-9260(21)00078-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.39</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kazemi, Amir Hossein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design and analysis of a flat gain and linear low noise amplifier using modified current reused structure with feedforward structure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a Low Noise Amplifier (LNA) with the current reused topology is proposed for wideband applications. To increase input impedance matching common source with inductive degeneration and RC shunt feedback structure is used. To extend the bandwidth, inductive series peaking technique is utilized. In the next stage, two parallel structure is hired to have a high voltage gain with low power consumption in addition to improve linearity. Also, by using the self-forward-body-bias (SFBB) technique, supply voltage is reduced and as a result power consumption is decreased further. The proposed LNA exhibits the high and flat gain of 14.7–15.4 dB, input return loss of less than −11 dB and noise figure range of 2.3–4.4 dB from 1 GHz up to 8 GHz. It consumes 5.4 mW from a 1.2 V power supply. The achieved IIP3 range for the proposed LNA is 0 dBm up to +2.7 dBm. The proposed LNA occupies 0.45 mm2 in 0.18-μm CMOS technology.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feedforward structure</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Current reuse technique</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Low noise amplifier</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shunt feedback</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hayati, Mohsen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Han, Mingming ELSEVIER</subfield><subfield code="t">Functional evaluation of vandetanib metabolism by CYP3A4 variants and potential drug interactions</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006836798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:81</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:123-136</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.vlsi.2021.05.013</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.39</subfield><subfield code="j">Toxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">81</subfield><subfield code="j">2021</subfield><subfield code="h">123-136</subfield><subfield code="g">14</subfield></datafield></record></collection>
|
score |
7.401165 |