Dietary electrolyte balance of Atlantic salmon (Salmo salar) freshwater feeds: Impact on osmoregulation, mineral metabolism and performance in seawater
Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to...
Ausführliche Beschreibung
Autor*in: |
Philip, Antony J. Prabhu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Übergeordnetes Werk: |
Enthalten in: MODULATION OF HISTONE H3 LYSINE 9 TRIMETHYLATION REGULATES SYNAPTIC PLASTICITY IN HIPPOCAMPAL NEURONS - Tong, Liqi ELSEVIER, 2019, an international journal devoted to research on the exploration, improvement and management of all aquatic food resources, both floristic and faunistic, from freshwater, brackish and marine environment, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:546 ; year:2022 ; day:15 ; month:01 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.aquaculture.2021.737305 |
---|
Katalog-ID: |
ELV055501818 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV055501818 | ||
003 | DE-627 | ||
005 | 20230626041741.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220105s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.aquaculture.2021.737305 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001545.pica |
035 | |a (DE-627)ELV055501818 | ||
035 | |a (ELSEVIER)S0044-8486(21)00968-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.68 |2 bkl | ||
100 | 1 | |a Philip, Antony J. Prabhu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dietary electrolyte balance of Atlantic salmon (Salmo salar) freshwater feeds: Impact on osmoregulation, mineral metabolism and performance in seawater |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities. | ||
520 | |a Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities. | ||
700 | 1 | |a Fjelldal, Per Gunnar |4 oth | |
700 | 1 | |a Remø, Sofie C. |4 oth | |
700 | 1 | |a Selvam, Chandrasekar |4 oth | |
700 | 1 | |a Hamre, Kristin |4 oth | |
700 | 1 | |a Espe, Marit |4 oth | |
700 | 1 | |a Holen, Elisabeth |4 oth | |
700 | 1 | |a Skjærven, Kaja H. |4 oth | |
700 | 1 | |a Vikså, Vibeke |4 oth | |
700 | 1 | |a Subramanian, Saravanan |4 oth | |
700 | 1 | |a Schrama, Johan W. |4 oth | |
700 | 1 | |a Sissener, Nini H. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Tong, Liqi ELSEVIER |t MODULATION OF HISTONE H3 LYSINE 9 TRIMETHYLATION REGULATES SYNAPTIC PLASTICITY IN HIPPOCAMPAL NEURONS |d 2019 |d an international journal devoted to research on the exploration, improvement and management of all aquatic food resources, both floristic and faunistic, from freshwater, brackish and marine environment |g Amsterdam [u.a.] |w (DE-627)ELV003008401 |
773 | 1 | 8 | |g volume:546 |g year:2022 |g day:15 |g month:01 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.aquaculture.2021.737305 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 44.68 |j Gerontologie |j Geriatrie |q VZ |
951 | |a AR | ||
952 | |d 546 |j 2022 |b 15 |c 0115 |h 0 |
author_variant |
a j p p ajp ajpp |
---|---|
matchkey_str |
philipantonyjprabhufjelldalpergunnarrems:2022----:itreetoyeaacoalnislosloaafehaefesmatnsoeuainieam |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
44.68 |
publishDate |
2022 |
allfields |
10.1016/j.aquaculture.2021.737305 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001545.pica (DE-627)ELV055501818 (ELSEVIER)S0044-8486(21)00968-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.68 bkl Philip, Antony J. Prabhu verfasserin aut Dietary electrolyte balance of Atlantic salmon (Salmo salar) freshwater feeds: Impact on osmoregulation, mineral metabolism and performance in seawater 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities. Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities. Fjelldal, Per Gunnar oth Remø, Sofie C. oth Selvam, Chandrasekar oth Hamre, Kristin oth Espe, Marit oth Holen, Elisabeth oth Skjærven, Kaja H. oth Vikså, Vibeke oth Subramanian, Saravanan oth Schrama, Johan W. oth Sissener, Nini H. oth Enthalten in Elsevier Science Tong, Liqi ELSEVIER MODULATION OF HISTONE H3 LYSINE 9 TRIMETHYLATION REGULATES SYNAPTIC PLASTICITY IN HIPPOCAMPAL NEURONS 2019 an international journal devoted to research on the exploration, improvement and management of all aquatic food resources, both floristic and faunistic, from freshwater, brackish and marine environment Amsterdam [u.a.] (DE-627)ELV003008401 volume:546 year:2022 day:15 month:01 pages:0 https://doi.org/10.1016/j.aquaculture.2021.737305 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.68 Gerontologie Geriatrie VZ AR 546 2022 15 0115 0 |
spelling |
10.1016/j.aquaculture.2021.737305 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001545.pica (DE-627)ELV055501818 (ELSEVIER)S0044-8486(21)00968-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.68 bkl Philip, Antony J. Prabhu verfasserin aut Dietary electrolyte balance of Atlantic salmon (Salmo salar) freshwater feeds: Impact on osmoregulation, mineral metabolism and performance in seawater 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities. Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities. Fjelldal, Per Gunnar oth Remø, Sofie C. oth Selvam, Chandrasekar oth Hamre, Kristin oth Espe, Marit oth Holen, Elisabeth oth Skjærven, Kaja H. oth Vikså, Vibeke oth Subramanian, Saravanan oth Schrama, Johan W. oth Sissener, Nini H. oth Enthalten in Elsevier Science Tong, Liqi ELSEVIER MODULATION OF HISTONE H3 LYSINE 9 TRIMETHYLATION REGULATES SYNAPTIC PLASTICITY IN HIPPOCAMPAL NEURONS 2019 an international journal devoted to research on the exploration, improvement and management of all aquatic food resources, both floristic and faunistic, from freshwater, brackish and marine environment Amsterdam [u.a.] (DE-627)ELV003008401 volume:546 year:2022 day:15 month:01 pages:0 https://doi.org/10.1016/j.aquaculture.2021.737305 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.68 Gerontologie Geriatrie VZ AR 546 2022 15 0115 0 |
allfields_unstemmed |
10.1016/j.aquaculture.2021.737305 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001545.pica (DE-627)ELV055501818 (ELSEVIER)S0044-8486(21)00968-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.68 bkl Philip, Antony J. Prabhu verfasserin aut Dietary electrolyte balance of Atlantic salmon (Salmo salar) freshwater feeds: Impact on osmoregulation, mineral metabolism and performance in seawater 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities. Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities. Fjelldal, Per Gunnar oth Remø, Sofie C. oth Selvam, Chandrasekar oth Hamre, Kristin oth Espe, Marit oth Holen, Elisabeth oth Skjærven, Kaja H. oth Vikså, Vibeke oth Subramanian, Saravanan oth Schrama, Johan W. oth Sissener, Nini H. oth Enthalten in Elsevier Science Tong, Liqi ELSEVIER MODULATION OF HISTONE H3 LYSINE 9 TRIMETHYLATION REGULATES SYNAPTIC PLASTICITY IN HIPPOCAMPAL NEURONS 2019 an international journal devoted to research on the exploration, improvement and management of all aquatic food resources, both floristic and faunistic, from freshwater, brackish and marine environment Amsterdam [u.a.] (DE-627)ELV003008401 volume:546 year:2022 day:15 month:01 pages:0 https://doi.org/10.1016/j.aquaculture.2021.737305 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.68 Gerontologie Geriatrie VZ AR 546 2022 15 0115 0 |
allfieldsGer |
10.1016/j.aquaculture.2021.737305 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001545.pica (DE-627)ELV055501818 (ELSEVIER)S0044-8486(21)00968-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.68 bkl Philip, Antony J. Prabhu verfasserin aut Dietary electrolyte balance of Atlantic salmon (Salmo salar) freshwater feeds: Impact on osmoregulation, mineral metabolism and performance in seawater 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities. Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities. Fjelldal, Per Gunnar oth Remø, Sofie C. oth Selvam, Chandrasekar oth Hamre, Kristin oth Espe, Marit oth Holen, Elisabeth oth Skjærven, Kaja H. oth Vikså, Vibeke oth Subramanian, Saravanan oth Schrama, Johan W. oth Sissener, Nini H. oth Enthalten in Elsevier Science Tong, Liqi ELSEVIER MODULATION OF HISTONE H3 LYSINE 9 TRIMETHYLATION REGULATES SYNAPTIC PLASTICITY IN HIPPOCAMPAL NEURONS 2019 an international journal devoted to research on the exploration, improvement and management of all aquatic food resources, both floristic and faunistic, from freshwater, brackish and marine environment Amsterdam [u.a.] (DE-627)ELV003008401 volume:546 year:2022 day:15 month:01 pages:0 https://doi.org/10.1016/j.aquaculture.2021.737305 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.68 Gerontologie Geriatrie VZ AR 546 2022 15 0115 0 |
allfieldsSound |
10.1016/j.aquaculture.2021.737305 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001545.pica (DE-627)ELV055501818 (ELSEVIER)S0044-8486(21)00968-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.68 bkl Philip, Antony J. Prabhu verfasserin aut Dietary electrolyte balance of Atlantic salmon (Salmo salar) freshwater feeds: Impact on osmoregulation, mineral metabolism and performance in seawater 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities. Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities. Fjelldal, Per Gunnar oth Remø, Sofie C. oth Selvam, Chandrasekar oth Hamre, Kristin oth Espe, Marit oth Holen, Elisabeth oth Skjærven, Kaja H. oth Vikså, Vibeke oth Subramanian, Saravanan oth Schrama, Johan W. oth Sissener, Nini H. oth Enthalten in Elsevier Science Tong, Liqi ELSEVIER MODULATION OF HISTONE H3 LYSINE 9 TRIMETHYLATION REGULATES SYNAPTIC PLASTICITY IN HIPPOCAMPAL NEURONS 2019 an international journal devoted to research on the exploration, improvement and management of all aquatic food resources, both floristic and faunistic, from freshwater, brackish and marine environment Amsterdam [u.a.] (DE-627)ELV003008401 volume:546 year:2022 day:15 month:01 pages:0 https://doi.org/10.1016/j.aquaculture.2021.737305 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.68 Gerontologie Geriatrie VZ AR 546 2022 15 0115 0 |
language |
English |
source |
Enthalten in MODULATION OF HISTONE H3 LYSINE 9 TRIMETHYLATION REGULATES SYNAPTIC PLASTICITY IN HIPPOCAMPAL NEURONS Amsterdam [u.a.] volume:546 year:2022 day:15 month:01 pages:0 |
sourceStr |
Enthalten in MODULATION OF HISTONE H3 LYSINE 9 TRIMETHYLATION REGULATES SYNAPTIC PLASTICITY IN HIPPOCAMPAL NEURONS Amsterdam [u.a.] volume:546 year:2022 day:15 month:01 pages:0 |
format_phy_str_mv |
Article |
bklname |
Gerontologie Geriatrie |
institution |
findex.gbv.de |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
MODULATION OF HISTONE H3 LYSINE 9 TRIMETHYLATION REGULATES SYNAPTIC PLASTICITY IN HIPPOCAMPAL NEURONS |
authorswithroles_txt_mv |
Philip, Antony J. Prabhu @@aut@@ Fjelldal, Per Gunnar @@oth@@ Remø, Sofie C. @@oth@@ Selvam, Chandrasekar @@oth@@ Hamre, Kristin @@oth@@ Espe, Marit @@oth@@ Holen, Elisabeth @@oth@@ Skjærven, Kaja H. @@oth@@ Vikså, Vibeke @@oth@@ Subramanian, Saravanan @@oth@@ Schrama, Johan W. @@oth@@ Sissener, Nini H. @@oth@@ |
publishDateDaySort_date |
2022-01-15T00:00:00Z |
hierarchy_top_id |
ELV003008401 |
dewey-sort |
3610 |
id |
ELV055501818 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055501818</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626041741.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aquaculture.2021.737305</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001545.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055501818</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0044-8486(21)00968-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Philip, Antony J. Prabhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dietary electrolyte balance of Atlantic salmon (Salmo salar) freshwater feeds: Impact on osmoregulation, mineral metabolism and performance in seawater</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fjelldal, Per Gunnar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Remø, Sofie C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Selvam, Chandrasekar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hamre, Kristin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Espe, Marit</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Holen, Elisabeth</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skjærven, Kaja H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vikså, Vibeke</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Subramanian, Saravanan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schrama, Johan W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sissener, Nini H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Tong, Liqi ELSEVIER</subfield><subfield code="t">MODULATION OF HISTONE H3 LYSINE 9 TRIMETHYLATION REGULATES SYNAPTIC PLASTICITY IN HIPPOCAMPAL NEURONS</subfield><subfield code="d">2019</subfield><subfield code="d">an international journal devoted to research on the exploration, improvement and management of all aquatic food resources, both floristic and faunistic, from freshwater, brackish and marine environment</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003008401</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:546</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:15</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.aquaculture.2021.737305</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.68</subfield><subfield code="j">Gerontologie</subfield><subfield code="j">Geriatrie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">546</subfield><subfield code="j">2022</subfield><subfield code="b">15</subfield><subfield code="c">0115</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Philip, Antony J. Prabhu |
spellingShingle |
Philip, Antony J. Prabhu ddc 610 bkl 44.68 Dietary electrolyte balance of Atlantic salmon (Salmo salar) freshwater feeds: Impact on osmoregulation, mineral metabolism and performance in seawater |
authorStr |
Philip, Antony J. Prabhu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003008401 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.68 bkl Dietary electrolyte balance of Atlantic salmon (Salmo salar) freshwater feeds: Impact on osmoregulation, mineral metabolism and performance in seawater |
topic |
ddc 610 bkl 44.68 |
topic_unstemmed |
ddc 610 bkl 44.68 |
topic_browse |
ddc 610 bkl 44.68 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
p g f pg pgf s c r sc scr c s cs k h kh m e me e h eh k h s kh khs v v vv s s ss j w s jw jws n h s nh nhs |
hierarchy_parent_title |
MODULATION OF HISTONE H3 LYSINE 9 TRIMETHYLATION REGULATES SYNAPTIC PLASTICITY IN HIPPOCAMPAL NEURONS |
hierarchy_parent_id |
ELV003008401 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
MODULATION OF HISTONE H3 LYSINE 9 TRIMETHYLATION REGULATES SYNAPTIC PLASTICITY IN HIPPOCAMPAL NEURONS |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003008401 |
title |
Dietary electrolyte balance of Atlantic salmon (Salmo salar) freshwater feeds: Impact on osmoregulation, mineral metabolism and performance in seawater |
ctrlnum |
(DE-627)ELV055501818 (ELSEVIER)S0044-8486(21)00968-6 |
title_full |
Dietary electrolyte balance of Atlantic salmon (Salmo salar) freshwater feeds: Impact on osmoregulation, mineral metabolism and performance in seawater |
author_sort |
Philip, Antony J. Prabhu |
journal |
MODULATION OF HISTONE H3 LYSINE 9 TRIMETHYLATION REGULATES SYNAPTIC PLASTICITY IN HIPPOCAMPAL NEURONS |
journalStr |
MODULATION OF HISTONE H3 LYSINE 9 TRIMETHYLATION REGULATES SYNAPTIC PLASTICITY IN HIPPOCAMPAL NEURONS |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Philip, Antony J. Prabhu |
container_volume |
546 |
class |
610 VZ 44.68 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Philip, Antony J. Prabhu |
doi_str_mv |
10.1016/j.aquaculture.2021.737305 |
dewey-full |
610 |
title_sort |
dietary electrolyte balance of atlantic salmon (salmo salar) freshwater feeds: impact on osmoregulation, mineral metabolism and performance in seawater |
title_auth |
Dietary electrolyte balance of Atlantic salmon (Salmo salar) freshwater feeds: Impact on osmoregulation, mineral metabolism and performance in seawater |
abstract |
Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities. |
abstractGer |
Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities. |
abstract_unstemmed |
Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Dietary electrolyte balance of Atlantic salmon (Salmo salar) freshwater feeds: Impact on osmoregulation, mineral metabolism and performance in seawater |
url |
https://doi.org/10.1016/j.aquaculture.2021.737305 |
remote_bool |
true |
author2 |
Fjelldal, Per Gunnar Remø, Sofie C. Selvam, Chandrasekar Hamre, Kristin Espe, Marit Holen, Elisabeth Skjærven, Kaja H. Vikså, Vibeke Subramanian, Saravanan Schrama, Johan W. Sissener, Nini H. |
author2Str |
Fjelldal, Per Gunnar Remø, Sofie C. Selvam, Chandrasekar Hamre, Kristin Espe, Marit Holen, Elisabeth Skjærven, Kaja H. Vikså, Vibeke Subramanian, Saravanan Schrama, Johan W. Sissener, Nini H. |
ppnlink |
ELV003008401 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.aquaculture.2021.737305 |
up_date |
2024-07-06T17:43:28.704Z |
_version_ |
1803852509301702656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055501818</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626041741.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aquaculture.2021.737305</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001545.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055501818</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0044-8486(21)00968-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Philip, Antony J. Prabhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dietary electrolyte balance of Atlantic salmon (Salmo salar) freshwater feeds: Impact on osmoregulation, mineral metabolism and performance in seawater</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dietary electrolyte balance is the equilibrium of monovalent cations and anions that influence the acid-base balance of the feed (dEB = Na + K − Cl, mEq kg−1). Dietary electrolytes/minerals can influence the physiological changes during smoltification in Atlantic salmon. In this context, we aimed to study if the dEB of the freshwater feeds can be used to pre-adapt the hypoosmotic functionality and the associated effects on mineral metabolism. The dEB of commercial freshwater Atlantic salmon feeds in Norway varied from −9 to 400 mEq kg−1 feed. Three experimental feeds were formulated to study incremental levels of dEB reflecting the low (L-dEB, −50 to 0), median (M-dEB, 200–250) and high (H-dEB, 350–400). Triplicate groups of Atlantic salmon parr (36 g) were fed one of the three feeds for 8 weeks in freshwater at 12 °C. The fish were transferred to full strength seawater in indoor tanks and fed a commercial diet for 6 weeks. Growth was not differentially affected by dEB levels, neither in the freshwater phase nor in the seawater. Plasma electrolytes (Na+ and Cl−) and gill mRNA expression of sodium potassium ATPase (NKA a1b, seawater isoform) were significantly lower in L-dEB fed fish. In the intestine, carbonate precipitates 24 h after seawater transfer was higher in fish fed both L-dEB and H-dEB feeds compared to the M-dEB fed fish. Whole body and plasma mineral levels were significantly affected by dEB levels in freshwater feeds. Interestingly, the carryover effect of dEB in freshwater feeds was significant after 6 weeks in seawater for plasma and whole-body Zn status, with the H-dEB fed fish showing significantly increased body Zn status compared to L-dEB and M-dEB fed fish. The study revealed that mineral metabolism and intestinal response to seawater transfer can be pre-adapted by modulating the electrolyte and/or mineral balance in freshwater feeds in Atlantic salmon. Further, dEB did not affect long term development of cataract or vertebral deformities.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fjelldal, Per Gunnar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Remø, Sofie C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Selvam, Chandrasekar</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hamre, Kristin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Espe, Marit</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Holen, Elisabeth</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skjærven, Kaja H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vikså, Vibeke</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Subramanian, Saravanan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schrama, Johan W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sissener, Nini H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Tong, Liqi ELSEVIER</subfield><subfield code="t">MODULATION OF HISTONE H3 LYSINE 9 TRIMETHYLATION REGULATES SYNAPTIC PLASTICITY IN HIPPOCAMPAL NEURONS</subfield><subfield code="d">2019</subfield><subfield code="d">an international journal devoted to research on the exploration, improvement and management of all aquatic food resources, both floristic and faunistic, from freshwater, brackish and marine environment</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003008401</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:546</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:15</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.aquaculture.2021.737305</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.68</subfield><subfield code="j">Gerontologie</subfield><subfield code="j">Geriatrie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">546</subfield><subfield code="j">2022</subfield><subfield code="b">15</subfield><subfield code="c">0115</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.399617 |