Theory and applications of short-time linear canonical transform
The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time...
Ausführliche Beschreibung
Autor*in: |
Wei, Deyun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Modelling SARS-CoV-2 transmission in a UK university setting - Hill, Edward M. ELSEVIER, 2021, a review journal, Orlando, Fla |
---|---|
Übergeordnetes Werk: |
volume:118 ; year:2021 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.dsp.2021.103239 |
---|
Katalog-ID: |
ELV055509819 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV055509819 | ||
003 | DE-627 | ||
005 | 20230626041747.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220105s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.dsp.2021.103239 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001542.pica |
035 | |a (DE-627)ELV055509819 | ||
035 | |a (ELSEVIER)S1051-2004(21)00278-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.75 |2 bkl | ||
100 | 1 | |a Wei, Deyun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Theory and applications of short-time linear canonical transform |
264 | 1 | |c 2021transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST). | ||
520 | |a The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST). | ||
650 | 7 | |a Linear canonical transform |2 Elsevier | |
650 | 7 | |a Chirp signals |2 Elsevier | |
650 | 7 | |a Short-time linear canonical transform |2 Elsevier | |
650 | 7 | |a Short-time Fourier transform |2 Elsevier | |
700 | 1 | |a Hu, Huimin |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Academic Press |a Hill, Edward M. ELSEVIER |t Modelling SARS-CoV-2 transmission in a UK university setting |d 2021 |d a review journal |g Orlando, Fla |w (DE-627)ELV006540295 |
773 | 1 | 8 | |g volume:118 |g year:2021 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.dsp.2021.103239 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.75 |j Infektionskrankheiten |j parasitäre Krankheiten |x Medizin |q VZ |
951 | |a AR | ||
952 | |d 118 |j 2021 |h 0 |
author_variant |
d w dw |
---|---|
matchkey_str |
weideyunhuhuimin:2021----:hoynapiainosotieierao |
hierarchy_sort_str |
2021transfer abstract |
bklnumber |
44.75 |
publishDate |
2021 |
allfields |
10.1016/j.dsp.2021.103239 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001542.pica (DE-627)ELV055509819 (ELSEVIER)S1051-2004(21)00278-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.75 bkl Wei, Deyun verfasserin aut Theory and applications of short-time linear canonical transform 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST). The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST). Linear canonical transform Elsevier Chirp signals Elsevier Short-time linear canonical transform Elsevier Short-time Fourier transform Elsevier Hu, Huimin oth Enthalten in Academic Press Hill, Edward M. ELSEVIER Modelling SARS-CoV-2 transmission in a UK university setting 2021 a review journal Orlando, Fla (DE-627)ELV006540295 volume:118 year:2021 pages:0 https://doi.org/10.1016/j.dsp.2021.103239 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.75 Infektionskrankheiten parasitäre Krankheiten Medizin VZ AR 118 2021 0 |
spelling |
10.1016/j.dsp.2021.103239 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001542.pica (DE-627)ELV055509819 (ELSEVIER)S1051-2004(21)00278-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.75 bkl Wei, Deyun verfasserin aut Theory and applications of short-time linear canonical transform 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST). The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST). Linear canonical transform Elsevier Chirp signals Elsevier Short-time linear canonical transform Elsevier Short-time Fourier transform Elsevier Hu, Huimin oth Enthalten in Academic Press Hill, Edward M. ELSEVIER Modelling SARS-CoV-2 transmission in a UK university setting 2021 a review journal Orlando, Fla (DE-627)ELV006540295 volume:118 year:2021 pages:0 https://doi.org/10.1016/j.dsp.2021.103239 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.75 Infektionskrankheiten parasitäre Krankheiten Medizin VZ AR 118 2021 0 |
allfields_unstemmed |
10.1016/j.dsp.2021.103239 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001542.pica (DE-627)ELV055509819 (ELSEVIER)S1051-2004(21)00278-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.75 bkl Wei, Deyun verfasserin aut Theory and applications of short-time linear canonical transform 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST). The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST). Linear canonical transform Elsevier Chirp signals Elsevier Short-time linear canonical transform Elsevier Short-time Fourier transform Elsevier Hu, Huimin oth Enthalten in Academic Press Hill, Edward M. ELSEVIER Modelling SARS-CoV-2 transmission in a UK university setting 2021 a review journal Orlando, Fla (DE-627)ELV006540295 volume:118 year:2021 pages:0 https://doi.org/10.1016/j.dsp.2021.103239 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.75 Infektionskrankheiten parasitäre Krankheiten Medizin VZ AR 118 2021 0 |
allfieldsGer |
10.1016/j.dsp.2021.103239 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001542.pica (DE-627)ELV055509819 (ELSEVIER)S1051-2004(21)00278-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.75 bkl Wei, Deyun verfasserin aut Theory and applications of short-time linear canonical transform 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST). The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST). Linear canonical transform Elsevier Chirp signals Elsevier Short-time linear canonical transform Elsevier Short-time Fourier transform Elsevier Hu, Huimin oth Enthalten in Academic Press Hill, Edward M. ELSEVIER Modelling SARS-CoV-2 transmission in a UK university setting 2021 a review journal Orlando, Fla (DE-627)ELV006540295 volume:118 year:2021 pages:0 https://doi.org/10.1016/j.dsp.2021.103239 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.75 Infektionskrankheiten parasitäre Krankheiten Medizin VZ AR 118 2021 0 |
allfieldsSound |
10.1016/j.dsp.2021.103239 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001542.pica (DE-627)ELV055509819 (ELSEVIER)S1051-2004(21)00278-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.75 bkl Wei, Deyun verfasserin aut Theory and applications of short-time linear canonical transform 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST). The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST). Linear canonical transform Elsevier Chirp signals Elsevier Short-time linear canonical transform Elsevier Short-time Fourier transform Elsevier Hu, Huimin oth Enthalten in Academic Press Hill, Edward M. ELSEVIER Modelling SARS-CoV-2 transmission in a UK university setting 2021 a review journal Orlando, Fla (DE-627)ELV006540295 volume:118 year:2021 pages:0 https://doi.org/10.1016/j.dsp.2021.103239 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.75 Infektionskrankheiten parasitäre Krankheiten Medizin VZ AR 118 2021 0 |
language |
English |
source |
Enthalten in Modelling SARS-CoV-2 transmission in a UK university setting Orlando, Fla volume:118 year:2021 pages:0 |
sourceStr |
Enthalten in Modelling SARS-CoV-2 transmission in a UK university setting Orlando, Fla volume:118 year:2021 pages:0 |
format_phy_str_mv |
Article |
bklname |
Infektionskrankheiten parasitäre Krankheiten |
institution |
findex.gbv.de |
topic_facet |
Linear canonical transform Chirp signals Short-time linear canonical transform Short-time Fourier transform |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Modelling SARS-CoV-2 transmission in a UK university setting |
authorswithroles_txt_mv |
Wei, Deyun @@aut@@ Hu, Huimin @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV006540295 |
dewey-sort |
3610 |
id |
ELV055509819 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055509819</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626041747.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.dsp.2021.103239</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001542.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055509819</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1051-2004(21)00278-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wei, Deyun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory and applications of short-time linear canonical transform</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Linear canonical transform</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chirp signals</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Short-time linear canonical transform</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Short-time Fourier transform</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Huimin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">Hill, Edward M. ELSEVIER</subfield><subfield code="t">Modelling SARS-CoV-2 transmission in a UK university setting</subfield><subfield code="d">2021</subfield><subfield code="d">a review journal</subfield><subfield code="g">Orlando, Fla</subfield><subfield code="w">(DE-627)ELV006540295</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:118</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.dsp.2021.103239</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.75</subfield><subfield code="j">Infektionskrankheiten</subfield><subfield code="j">parasitäre Krankheiten</subfield><subfield code="x">Medizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">118</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Wei, Deyun |
spellingShingle |
Wei, Deyun ddc 610 bkl 44.75 Elsevier Linear canonical transform Elsevier Chirp signals Elsevier Short-time linear canonical transform Elsevier Short-time Fourier transform Theory and applications of short-time linear canonical transform |
authorStr |
Wei, Deyun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006540295 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.75 bkl Theory and applications of short-time linear canonical transform Linear canonical transform Elsevier Chirp signals Elsevier Short-time linear canonical transform Elsevier Short-time Fourier transform Elsevier |
topic |
ddc 610 bkl 44.75 Elsevier Linear canonical transform Elsevier Chirp signals Elsevier Short-time linear canonical transform Elsevier Short-time Fourier transform |
topic_unstemmed |
ddc 610 bkl 44.75 Elsevier Linear canonical transform Elsevier Chirp signals Elsevier Short-time linear canonical transform Elsevier Short-time Fourier transform |
topic_browse |
ddc 610 bkl 44.75 Elsevier Linear canonical transform Elsevier Chirp signals Elsevier Short-time linear canonical transform Elsevier Short-time Fourier transform |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h h hh |
hierarchy_parent_title |
Modelling SARS-CoV-2 transmission in a UK university setting |
hierarchy_parent_id |
ELV006540295 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Modelling SARS-CoV-2 transmission in a UK university setting |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006540295 |
title |
Theory and applications of short-time linear canonical transform |
ctrlnum |
(DE-627)ELV055509819 (ELSEVIER)S1051-2004(21)00278-5 |
title_full |
Theory and applications of short-time linear canonical transform |
author_sort |
Wei, Deyun |
journal |
Modelling SARS-CoV-2 transmission in a UK university setting |
journalStr |
Modelling SARS-CoV-2 transmission in a UK university setting |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Wei, Deyun |
container_volume |
118 |
class |
610 VZ 44.75 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wei, Deyun |
doi_str_mv |
10.1016/j.dsp.2021.103239 |
dewey-full |
610 |
title_sort |
theory and applications of short-time linear canonical transform |
title_auth |
Theory and applications of short-time linear canonical transform |
abstract |
The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST). |
abstractGer |
The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST). |
abstract_unstemmed |
The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST). |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Theory and applications of short-time linear canonical transform |
url |
https://doi.org/10.1016/j.dsp.2021.103239 |
remote_bool |
true |
author2 |
Hu, Huimin |
author2Str |
Hu, Huimin |
ppnlink |
ELV006540295 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.dsp.2021.103239 |
up_date |
2024-07-06T17:44:53.458Z |
_version_ |
1803852598172712960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055509819</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626041747.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.dsp.2021.103239</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001542.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055509819</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1051-2004(21)00278-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wei, Deyun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory and applications of short-time linear canonical transform</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The linear canonical transform (LCT) is a powerful tool for signal processing and analyzing the non-stationary signals. However, it fails to process the signals whose linear canonical frequencies change over time due to the lack of time localization information. In this paper, we use the short-time linear canonical transform (STLCT) to solve this problem. First, its one-dimensional and two-dimensional inverse transformations are derived. Also, we derive some basic properties and the convolution theorem. Then, we also provide the time-canonical-frequency analysis of this transform. Finally, we give the discrete form and filter interpretation of STLCT. Moreover, we study practical applications of STLCT in time-frequency analysis of chirp signals. The simulation results show that the time-frequency resolution of STLCT is better than that of short-time Fourier transform (STFT), wavelet transform (WT) and generalized S transform (GST).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Linear canonical transform</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chirp signals</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Short-time linear canonical transform</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Short-time Fourier transform</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Huimin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">Hill, Edward M. ELSEVIER</subfield><subfield code="t">Modelling SARS-CoV-2 transmission in a UK university setting</subfield><subfield code="d">2021</subfield><subfield code="d">a review journal</subfield><subfield code="g">Orlando, Fla</subfield><subfield code="w">(DE-627)ELV006540295</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:118</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.dsp.2021.103239</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.75</subfield><subfield code="j">Infektionskrankheiten</subfield><subfield code="j">parasitäre Krankheiten</subfield><subfield code="x">Medizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">118</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4019346 |