New infinite hierarchies of polynomial identities related to the Capparelli partition theorems
We prove a new polynomial refinement of the Capparelli's identities. Using a special case of Bailey's lemma we prove many infinite families of sum-product identities that root from our finite analogues of Capparelli's identities. We also discuss the q ↦ 1 / q duality transformation of...
Ausführliche Beschreibung
Autor*in: |
Berkovich, Alexander [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: In silico drug repurposing in COVID-19: A network-based analysis - Sibilio, Pasquale ELSEVIER, 2021, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:506 ; year:2022 ; number:2 ; day:15 ; month:02 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jmaa.2021.125678 |
---|
Katalog-ID: |
ELV055617379 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV055617379 | ||
003 | DE-627 | ||
005 | 20230624222706.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220105s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmaa.2021.125678 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001556.pica |
035 | |a (DE-627)ELV055617379 | ||
035 | |a (ELSEVIER)S0022-247X(21)00757-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Berkovich, Alexander |e verfasserin |4 aut | |
245 | 1 | 0 | |a New infinite hierarchies of polynomial identities related to the Capparelli partition theorems |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We prove a new polynomial refinement of the Capparelli's identities. Using a special case of Bailey's lemma we prove many infinite families of sum-product identities that root from our finite analogues of Capparelli's identities. We also discuss the q ↦ 1 / q duality transformation of the base identities and some related partition theoretic relations. | ||
650 | 7 | |a Capparelli's identities |2 Elsevier | |
650 | 7 | |a Infinite hierarchies of q-series identities |2 Elsevier | |
650 | 7 | |a Bailey's lemma |2 Elsevier | |
650 | 7 | |a q-binomial identities |2 Elsevier | |
700 | 1 | |a Uncu, Ali Kemal |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Sibilio, Pasquale ELSEVIER |t In silico drug repurposing in COVID-19: A network-based analysis |d 2021 |g Amsterdam [u.a.] |w (DE-627)ELV006634001 |
773 | 1 | 8 | |g volume:506 |g year:2022 |g number:2 |g day:15 |g month:02 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmaa.2021.125678 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
936 | b | k | |a 44.40 |j Pharmazie |j Pharmazeutika |q VZ |
951 | |a AR | ||
952 | |d 506 |j 2022 |e 2 |b 15 |c 0215 |h 0 |
author_variant |
a b ab |
---|---|
matchkey_str |
berkovichalexanderuncualikemal:2022----:eifntheacisfoyoildniiseaetteap |
hierarchy_sort_str |
2022 |
bklnumber |
44.40 |
publishDate |
2022 |
allfields |
10.1016/j.jmaa.2021.125678 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001556.pica (DE-627)ELV055617379 (ELSEVIER)S0022-247X(21)00757-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Berkovich, Alexander verfasserin aut New infinite hierarchies of polynomial identities related to the Capparelli partition theorems 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We prove a new polynomial refinement of the Capparelli's identities. Using a special case of Bailey's lemma we prove many infinite families of sum-product identities that root from our finite analogues of Capparelli's identities. We also discuss the q ↦ 1 / q duality transformation of the base identities and some related partition theoretic relations. Capparelli's identities Elsevier Infinite hierarchies of q-series identities Elsevier Bailey's lemma Elsevier q-binomial identities Elsevier Uncu, Ali Kemal oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:506 year:2022 number:2 day:15 month:02 pages:0 https://doi.org/10.1016/j.jmaa.2021.125678 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 506 2022 2 15 0215 0 |
spelling |
10.1016/j.jmaa.2021.125678 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001556.pica (DE-627)ELV055617379 (ELSEVIER)S0022-247X(21)00757-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Berkovich, Alexander verfasserin aut New infinite hierarchies of polynomial identities related to the Capparelli partition theorems 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We prove a new polynomial refinement of the Capparelli's identities. Using a special case of Bailey's lemma we prove many infinite families of sum-product identities that root from our finite analogues of Capparelli's identities. We also discuss the q ↦ 1 / q duality transformation of the base identities and some related partition theoretic relations. Capparelli's identities Elsevier Infinite hierarchies of q-series identities Elsevier Bailey's lemma Elsevier q-binomial identities Elsevier Uncu, Ali Kemal oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:506 year:2022 number:2 day:15 month:02 pages:0 https://doi.org/10.1016/j.jmaa.2021.125678 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 506 2022 2 15 0215 0 |
allfields_unstemmed |
10.1016/j.jmaa.2021.125678 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001556.pica (DE-627)ELV055617379 (ELSEVIER)S0022-247X(21)00757-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Berkovich, Alexander verfasserin aut New infinite hierarchies of polynomial identities related to the Capparelli partition theorems 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We prove a new polynomial refinement of the Capparelli's identities. Using a special case of Bailey's lemma we prove many infinite families of sum-product identities that root from our finite analogues of Capparelli's identities. We also discuss the q ↦ 1 / q duality transformation of the base identities and some related partition theoretic relations. Capparelli's identities Elsevier Infinite hierarchies of q-series identities Elsevier Bailey's lemma Elsevier q-binomial identities Elsevier Uncu, Ali Kemal oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:506 year:2022 number:2 day:15 month:02 pages:0 https://doi.org/10.1016/j.jmaa.2021.125678 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 506 2022 2 15 0215 0 |
allfieldsGer |
10.1016/j.jmaa.2021.125678 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001556.pica (DE-627)ELV055617379 (ELSEVIER)S0022-247X(21)00757-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Berkovich, Alexander verfasserin aut New infinite hierarchies of polynomial identities related to the Capparelli partition theorems 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We prove a new polynomial refinement of the Capparelli's identities. Using a special case of Bailey's lemma we prove many infinite families of sum-product identities that root from our finite analogues of Capparelli's identities. We also discuss the q ↦ 1 / q duality transformation of the base identities and some related partition theoretic relations. Capparelli's identities Elsevier Infinite hierarchies of q-series identities Elsevier Bailey's lemma Elsevier q-binomial identities Elsevier Uncu, Ali Kemal oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:506 year:2022 number:2 day:15 month:02 pages:0 https://doi.org/10.1016/j.jmaa.2021.125678 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 506 2022 2 15 0215 0 |
allfieldsSound |
10.1016/j.jmaa.2021.125678 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001556.pica (DE-627)ELV055617379 (ELSEVIER)S0022-247X(21)00757-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Berkovich, Alexander verfasserin aut New infinite hierarchies of polynomial identities related to the Capparelli partition theorems 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We prove a new polynomial refinement of the Capparelli's identities. Using a special case of Bailey's lemma we prove many infinite families of sum-product identities that root from our finite analogues of Capparelli's identities. We also discuss the q ↦ 1 / q duality transformation of the base identities and some related partition theoretic relations. Capparelli's identities Elsevier Infinite hierarchies of q-series identities Elsevier Bailey's lemma Elsevier q-binomial identities Elsevier Uncu, Ali Kemal oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:506 year:2022 number:2 day:15 month:02 pages:0 https://doi.org/10.1016/j.jmaa.2021.125678 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 506 2022 2 15 0215 0 |
language |
English |
source |
Enthalten in In silico drug repurposing in COVID-19: A network-based analysis Amsterdam [u.a.] volume:506 year:2022 number:2 day:15 month:02 pages:0 |
sourceStr |
Enthalten in In silico drug repurposing in COVID-19: A network-based analysis Amsterdam [u.a.] volume:506 year:2022 number:2 day:15 month:02 pages:0 |
format_phy_str_mv |
Article |
bklname |
Pharmazie Pharmazeutika |
institution |
findex.gbv.de |
topic_facet |
Capparelli's identities Infinite hierarchies of q-series identities Bailey's lemma q-binomial identities |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
In silico drug repurposing in COVID-19: A network-based analysis |
authorswithroles_txt_mv |
Berkovich, Alexander @@aut@@ Uncu, Ali Kemal @@oth@@ |
publishDateDaySort_date |
2022-01-15T00:00:00Z |
hierarchy_top_id |
ELV006634001 |
dewey-sort |
3610 |
id |
ELV055617379 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055617379</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624222706.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmaa.2021.125678</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001556.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055617379</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-247X(21)00757-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berkovich, Alexander</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New infinite hierarchies of polynomial identities related to the Capparelli partition theorems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We prove a new polynomial refinement of the Capparelli's identities. Using a special case of Bailey's lemma we prove many infinite families of sum-product identities that root from our finite analogues of Capparelli's identities. We also discuss the q ↦ 1 / q duality transformation of the base identities and some related partition theoretic relations.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Capparelli's identities</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Infinite hierarchies of q-series identities</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bailey's lemma</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">q-binomial identities</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uncu, Ali Kemal</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sibilio, Pasquale ELSEVIER</subfield><subfield code="t">In silico drug repurposing in COVID-19: A network-based analysis</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006634001</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:506</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmaa.2021.125678</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">506</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">0215</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Berkovich, Alexander |
spellingShingle |
Berkovich, Alexander ddc 610 bkl 44.40 Elsevier Capparelli's identities Elsevier Infinite hierarchies of q-series identities Elsevier Bailey's lemma Elsevier q-binomial identities New infinite hierarchies of polynomial identities related to the Capparelli partition theorems |
authorStr |
Berkovich, Alexander |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006634001 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.40 bkl New infinite hierarchies of polynomial identities related to the Capparelli partition theorems Capparelli's identities Elsevier Infinite hierarchies of q-series identities Elsevier Bailey's lemma Elsevier q-binomial identities Elsevier |
topic |
ddc 610 bkl 44.40 Elsevier Capparelli's identities Elsevier Infinite hierarchies of q-series identities Elsevier Bailey's lemma Elsevier q-binomial identities |
topic_unstemmed |
ddc 610 bkl 44.40 Elsevier Capparelli's identities Elsevier Infinite hierarchies of q-series identities Elsevier Bailey's lemma Elsevier q-binomial identities |
topic_browse |
ddc 610 bkl 44.40 Elsevier Capparelli's identities Elsevier Infinite hierarchies of q-series identities Elsevier Bailey's lemma Elsevier q-binomial identities |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
a k u ak aku |
hierarchy_parent_title |
In silico drug repurposing in COVID-19: A network-based analysis |
hierarchy_parent_id |
ELV006634001 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
In silico drug repurposing in COVID-19: A network-based analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006634001 |
title |
New infinite hierarchies of polynomial identities related to the Capparelli partition theorems |
ctrlnum |
(DE-627)ELV055617379 (ELSEVIER)S0022-247X(21)00757-5 |
title_full |
New infinite hierarchies of polynomial identities related to the Capparelli partition theorems |
author_sort |
Berkovich, Alexander |
journal |
In silico drug repurposing in COVID-19: A network-based analysis |
journalStr |
In silico drug repurposing in COVID-19: A network-based analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Berkovich, Alexander |
container_volume |
506 |
class |
610 VZ 44.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Berkovich, Alexander |
doi_str_mv |
10.1016/j.jmaa.2021.125678 |
dewey-full |
610 |
title_sort |
new infinite hierarchies of polynomial identities related to the capparelli partition theorems |
title_auth |
New infinite hierarchies of polynomial identities related to the Capparelli partition theorems |
abstract |
We prove a new polynomial refinement of the Capparelli's identities. Using a special case of Bailey's lemma we prove many infinite families of sum-product identities that root from our finite analogues of Capparelli's identities. We also discuss the q ↦ 1 / q duality transformation of the base identities and some related partition theoretic relations. |
abstractGer |
We prove a new polynomial refinement of the Capparelli's identities. Using a special case of Bailey's lemma we prove many infinite families of sum-product identities that root from our finite analogues of Capparelli's identities. We also discuss the q ↦ 1 / q duality transformation of the base identities and some related partition theoretic relations. |
abstract_unstemmed |
We prove a new polynomial refinement of the Capparelli's identities. Using a special case of Bailey's lemma we prove many infinite families of sum-product identities that root from our finite analogues of Capparelli's identities. We also discuss the q ↦ 1 / q duality transformation of the base identities and some related partition theoretic relations. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA |
container_issue |
2 |
title_short |
New infinite hierarchies of polynomial identities related to the Capparelli partition theorems |
url |
https://doi.org/10.1016/j.jmaa.2021.125678 |
remote_bool |
true |
author2 |
Uncu, Ali Kemal |
author2Str |
Uncu, Ali Kemal |
ppnlink |
ELV006634001 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.jmaa.2021.125678 |
up_date |
2024-07-06T18:02:46.432Z |
_version_ |
1803853723271692288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055617379</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624222706.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmaa.2021.125678</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001556.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055617379</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-247X(21)00757-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berkovich, Alexander</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New infinite hierarchies of polynomial identities related to the Capparelli partition theorems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We prove a new polynomial refinement of the Capparelli's identities. Using a special case of Bailey's lemma we prove many infinite families of sum-product identities that root from our finite analogues of Capparelli's identities. We also discuss the q ↦ 1 / q duality transformation of the base identities and some related partition theoretic relations.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Capparelli's identities</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Infinite hierarchies of q-series identities</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bailey's lemma</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">q-binomial identities</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uncu, Ali Kemal</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sibilio, Pasquale ELSEVIER</subfield><subfield code="t">In silico drug repurposing in COVID-19: A network-based analysis</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006634001</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:506</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmaa.2021.125678</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">506</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">0215</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401434 |