New infinite hierarchies of polynomial identities related to the Capparelli partition theorems

We prove a new polynomial refinement of the Capparelli's identities. Using a special case of Bailey's lemma we prove many infinite families of sum-product identities that root from our finite analogues of Capparelli's identities. We also discuss the q ↦ 1 / q duality transformation of...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Berkovich, Alexander [verfasserIn]

Uncu, Ali Kemal

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Capparelli's identities

Infinite hierarchies of q-series identities

Bailey's lemma

q-binomial identities

Übergeordnetes Werk:

Enthalten in: In silico drug repurposing in COVID-19: A network-based analysis - Sibilio, Pasquale ELSEVIER, 2021, Amsterdam [u.a.]

Übergeordnetes Werk:

volume:506 ; year:2022 ; number:2 ; day:15 ; month:02 ; pages:0

Links:

Volltext

DOI / URN:

10.1016/j.jmaa.2021.125678

Katalog-ID:

ELV055617379

Nicht das Richtige dabei?

Schreiben Sie uns!