Saliency-Guided Deep Learning Network for Automatic Target Delineation in Post-Operative Stereotactic Partial Breast Irradiation
To accommodate an efficient clinical workflow in partial breast irradiation (PBI), fast, accurate and automated target delineation is desired. In this study, we develop a saliency-based deep learning segmentation (SDL-Seg) algorithm by incorporating prior domain knowledge for automatic gross tumor v...
Ausführliche Beschreibung
Autor*in: |
Kazemimoghadam, M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Xiaokeping-induced autophagy protects pancreatic β-cells against apoptosis under high glucose stress - Wu, Yanyang ELSEVIER, 2018, the official journal of the American Society for Therapeutic Radiology and Oncology, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:111 ; year:2021 ; number:3 ; day:1 ; month:11 ; pages:112 |
Links: |
---|
DOI / URN: |
10.1016/j.ijrobp.2021.07.519 |
---|
Katalog-ID: |
ELV055643744 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV055643744 | ||
003 | DE-627 | ||
005 | 20230624222828.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220105s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijrobp.2021.07.519 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001678.pica |
035 | |a (DE-627)ELV055643744 | ||
035 | |a (ELSEVIER)S0360-3016(21)01389-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Kazemimoghadam, M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Saliency-Guided Deep Learning Network for Automatic Target Delineation in Post-Operative Stereotactic Partial Breast Irradiation |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a To accommodate an efficient clinical workflow in partial breast irradiation (PBI), fast, accurate and automated target delineation is desired. In this study, we develop a saliency-based deep learning segmentation (SDL-Seg) algorithm by incorporating prior domain knowledge for automatic gross tumor volume (GTV) delineation in post-op breast irradiation. | ||
700 | 1 | |a Chi, W. |4 oth | |
700 | 1 | |a Rahimi, A.S. |4 oth | |
700 | 1 | |a Kim, N. |4 oth | |
700 | 1 | |a Alluri, P.G. |4 oth | |
700 | 1 | |a Nwachukwu, C.R. |4 oth | |
700 | 1 | |a Lu, W. |4 oth | |
700 | 1 | |a Gu, X. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Wu, Yanyang ELSEVIER |t Xiaokeping-induced autophagy protects pancreatic β-cells against apoptosis under high glucose stress |d 2018 |d the official journal of the American Society for Therapeutic Radiology and Oncology |g Amsterdam [u.a.] |w (DE-627)ELV000113948 |
773 | 1 | 8 | |g volume:111 |g year:2021 |g number:3 |g day:1 |g month:11 |g pages:112 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijrobp.2021.07.519 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
936 | b | k | |a 44.40 |j Pharmazie |j Pharmazeutika |q VZ |
951 | |a AR | ||
952 | |d 111 |j 2021 |e 3 |b 1 |c 1101 |h 112 |y 111.2021, 3, e112- |
author_variant |
m k mk |
---|---|
matchkey_str |
kazemimoghadammchiwrahimiaskimnalluripgn:2021----:ainyuddeperigewrfruoaitredlnainnotprtvseet |
hierarchy_sort_str |
2021 |
bklnumber |
44.40 |
publishDate |
2021 |
allfields |
10.1016/j.ijrobp.2021.07.519 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001678.pica (DE-627)ELV055643744 (ELSEVIER)S0360-3016(21)01389-4 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Kazemimoghadam, M. verfasserin aut Saliency-Guided Deep Learning Network for Automatic Target Delineation in Post-Operative Stereotactic Partial Breast Irradiation 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To accommodate an efficient clinical workflow in partial breast irradiation (PBI), fast, accurate and automated target delineation is desired. In this study, we develop a saliency-based deep learning segmentation (SDL-Seg) algorithm by incorporating prior domain knowledge for automatic gross tumor volume (GTV) delineation in post-op breast irradiation. Chi, W. oth Rahimi, A.S. oth Kim, N. oth Alluri, P.G. oth Nwachukwu, C.R. oth Lu, W. oth Gu, X. oth Enthalten in Elsevier Science Wu, Yanyang ELSEVIER Xiaokeping-induced autophagy protects pancreatic β-cells against apoptosis under high glucose stress 2018 the official journal of the American Society for Therapeutic Radiology and Oncology Amsterdam [u.a.] (DE-627)ELV000113948 volume:111 year:2021 number:3 day:1 month:11 pages:112 https://doi.org/10.1016/j.ijrobp.2021.07.519 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 111 2021 3 1 1101 112 111.2021, 3, e112- |
spelling |
10.1016/j.ijrobp.2021.07.519 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001678.pica (DE-627)ELV055643744 (ELSEVIER)S0360-3016(21)01389-4 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Kazemimoghadam, M. verfasserin aut Saliency-Guided Deep Learning Network for Automatic Target Delineation in Post-Operative Stereotactic Partial Breast Irradiation 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To accommodate an efficient clinical workflow in partial breast irradiation (PBI), fast, accurate and automated target delineation is desired. In this study, we develop a saliency-based deep learning segmentation (SDL-Seg) algorithm by incorporating prior domain knowledge for automatic gross tumor volume (GTV) delineation in post-op breast irradiation. Chi, W. oth Rahimi, A.S. oth Kim, N. oth Alluri, P.G. oth Nwachukwu, C.R. oth Lu, W. oth Gu, X. oth Enthalten in Elsevier Science Wu, Yanyang ELSEVIER Xiaokeping-induced autophagy protects pancreatic β-cells against apoptosis under high glucose stress 2018 the official journal of the American Society for Therapeutic Radiology and Oncology Amsterdam [u.a.] (DE-627)ELV000113948 volume:111 year:2021 number:3 day:1 month:11 pages:112 https://doi.org/10.1016/j.ijrobp.2021.07.519 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 111 2021 3 1 1101 112 111.2021, 3, e112- |
allfields_unstemmed |
10.1016/j.ijrobp.2021.07.519 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001678.pica (DE-627)ELV055643744 (ELSEVIER)S0360-3016(21)01389-4 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Kazemimoghadam, M. verfasserin aut Saliency-Guided Deep Learning Network for Automatic Target Delineation in Post-Operative Stereotactic Partial Breast Irradiation 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To accommodate an efficient clinical workflow in partial breast irradiation (PBI), fast, accurate and automated target delineation is desired. In this study, we develop a saliency-based deep learning segmentation (SDL-Seg) algorithm by incorporating prior domain knowledge for automatic gross tumor volume (GTV) delineation in post-op breast irradiation. Chi, W. oth Rahimi, A.S. oth Kim, N. oth Alluri, P.G. oth Nwachukwu, C.R. oth Lu, W. oth Gu, X. oth Enthalten in Elsevier Science Wu, Yanyang ELSEVIER Xiaokeping-induced autophagy protects pancreatic β-cells against apoptosis under high glucose stress 2018 the official journal of the American Society for Therapeutic Radiology and Oncology Amsterdam [u.a.] (DE-627)ELV000113948 volume:111 year:2021 number:3 day:1 month:11 pages:112 https://doi.org/10.1016/j.ijrobp.2021.07.519 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 111 2021 3 1 1101 112 111.2021, 3, e112- |
allfieldsGer |
10.1016/j.ijrobp.2021.07.519 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001678.pica (DE-627)ELV055643744 (ELSEVIER)S0360-3016(21)01389-4 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Kazemimoghadam, M. verfasserin aut Saliency-Guided Deep Learning Network for Automatic Target Delineation in Post-Operative Stereotactic Partial Breast Irradiation 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To accommodate an efficient clinical workflow in partial breast irradiation (PBI), fast, accurate and automated target delineation is desired. In this study, we develop a saliency-based deep learning segmentation (SDL-Seg) algorithm by incorporating prior domain knowledge for automatic gross tumor volume (GTV) delineation in post-op breast irradiation. Chi, W. oth Rahimi, A.S. oth Kim, N. oth Alluri, P.G. oth Nwachukwu, C.R. oth Lu, W. oth Gu, X. oth Enthalten in Elsevier Science Wu, Yanyang ELSEVIER Xiaokeping-induced autophagy protects pancreatic β-cells against apoptosis under high glucose stress 2018 the official journal of the American Society for Therapeutic Radiology and Oncology Amsterdam [u.a.] (DE-627)ELV000113948 volume:111 year:2021 number:3 day:1 month:11 pages:112 https://doi.org/10.1016/j.ijrobp.2021.07.519 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 111 2021 3 1 1101 112 111.2021, 3, e112- |
allfieldsSound |
10.1016/j.ijrobp.2021.07.519 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001678.pica (DE-627)ELV055643744 (ELSEVIER)S0360-3016(21)01389-4 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Kazemimoghadam, M. verfasserin aut Saliency-Guided Deep Learning Network for Automatic Target Delineation in Post-Operative Stereotactic Partial Breast Irradiation 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To accommodate an efficient clinical workflow in partial breast irradiation (PBI), fast, accurate and automated target delineation is desired. In this study, we develop a saliency-based deep learning segmentation (SDL-Seg) algorithm by incorporating prior domain knowledge for automatic gross tumor volume (GTV) delineation in post-op breast irradiation. Chi, W. oth Rahimi, A.S. oth Kim, N. oth Alluri, P.G. oth Nwachukwu, C.R. oth Lu, W. oth Gu, X. oth Enthalten in Elsevier Science Wu, Yanyang ELSEVIER Xiaokeping-induced autophagy protects pancreatic β-cells against apoptosis under high glucose stress 2018 the official journal of the American Society for Therapeutic Radiology and Oncology Amsterdam [u.a.] (DE-627)ELV000113948 volume:111 year:2021 number:3 day:1 month:11 pages:112 https://doi.org/10.1016/j.ijrobp.2021.07.519 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 111 2021 3 1 1101 112 111.2021, 3, e112- |
language |
English |
source |
Enthalten in Xiaokeping-induced autophagy protects pancreatic β-cells against apoptosis under high glucose stress Amsterdam [u.a.] volume:111 year:2021 number:3 day:1 month:11 pages:112 |
sourceStr |
Enthalten in Xiaokeping-induced autophagy protects pancreatic β-cells against apoptosis under high glucose stress Amsterdam [u.a.] volume:111 year:2021 number:3 day:1 month:11 pages:112 |
format_phy_str_mv |
Article |
bklname |
Pharmazie Pharmazeutika |
institution |
findex.gbv.de |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Xiaokeping-induced autophagy protects pancreatic β-cells against apoptosis under high glucose stress |
authorswithroles_txt_mv |
Kazemimoghadam, M. @@aut@@ Chi, W. @@oth@@ Rahimi, A.S. @@oth@@ Kim, N. @@oth@@ Alluri, P.G. @@oth@@ Nwachukwu, C.R. @@oth@@ Lu, W. @@oth@@ Gu, X. @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV000113948 |
dewey-sort |
3610 |
id |
ELV055643744 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055643744</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624222828.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijrobp.2021.07.519</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001678.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055643744</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3016(21)01389-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kazemimoghadam, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Saliency-Guided Deep Learning Network for Automatic Target Delineation in Post-Operative Stereotactic Partial Breast Irradiation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To accommodate an efficient clinical workflow in partial breast irradiation (PBI), fast, accurate and automated target delineation is desired. In this study, we develop a saliency-based deep learning segmentation (SDL-Seg) algorithm by incorporating prior domain knowledge for automatic gross tumor volume (GTV) delineation in post-op breast irradiation.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chi, W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rahimi, A.S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alluri, P.G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nwachukwu, C.R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, X.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Wu, Yanyang ELSEVIER</subfield><subfield code="t">Xiaokeping-induced autophagy protects pancreatic β-cells against apoptosis under high glucose stress</subfield><subfield code="d">2018</subfield><subfield code="d">the official journal of the American Society for Therapeutic Radiology and Oncology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000113948</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:111</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:1</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:112</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijrobp.2021.07.519</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">111</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">1</subfield><subfield code="c">1101</subfield><subfield code="h">112</subfield><subfield code="y">111.2021, 3, e112-</subfield></datafield></record></collection>
|
author |
Kazemimoghadam, M. |
spellingShingle |
Kazemimoghadam, M. ddc 610 bkl 44.40 Saliency-Guided Deep Learning Network for Automatic Target Delineation in Post-Operative Stereotactic Partial Breast Irradiation |
authorStr |
Kazemimoghadam, M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000113948 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.40 bkl Saliency-Guided Deep Learning Network for Automatic Target Delineation in Post-Operative Stereotactic Partial Breast Irradiation |
topic |
ddc 610 bkl 44.40 |
topic_unstemmed |
ddc 610 bkl 44.40 |
topic_browse |
ddc 610 bkl 44.40 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
w c wc a r ar n k nk p a pa c n cn w l wl x g xg |
hierarchy_parent_title |
Xiaokeping-induced autophagy protects pancreatic β-cells against apoptosis under high glucose stress |
hierarchy_parent_id |
ELV000113948 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Xiaokeping-induced autophagy protects pancreatic β-cells against apoptosis under high glucose stress |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000113948 |
title |
Saliency-Guided Deep Learning Network for Automatic Target Delineation in Post-Operative Stereotactic Partial Breast Irradiation |
ctrlnum |
(DE-627)ELV055643744 (ELSEVIER)S0360-3016(21)01389-4 |
title_full |
Saliency-Guided Deep Learning Network for Automatic Target Delineation in Post-Operative Stereotactic Partial Breast Irradiation |
author_sort |
Kazemimoghadam, M. |
journal |
Xiaokeping-induced autophagy protects pancreatic β-cells against apoptosis under high glucose stress |
journalStr |
Xiaokeping-induced autophagy protects pancreatic β-cells against apoptosis under high glucose stress |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
112 |
author_browse |
Kazemimoghadam, M. |
container_volume |
111 |
class |
610 VZ 44.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kazemimoghadam, M. |
doi_str_mv |
10.1016/j.ijrobp.2021.07.519 |
dewey-full |
610 |
title_sort |
saliency-guided deep learning network for automatic target delineation in post-operative stereotactic partial breast irradiation |
title_auth |
Saliency-Guided Deep Learning Network for Automatic Target Delineation in Post-Operative Stereotactic Partial Breast Irradiation |
abstract |
To accommodate an efficient clinical workflow in partial breast irradiation (PBI), fast, accurate and automated target delineation is desired. In this study, we develop a saliency-based deep learning segmentation (SDL-Seg) algorithm by incorporating prior domain knowledge for automatic gross tumor volume (GTV) delineation in post-op breast irradiation. |
abstractGer |
To accommodate an efficient clinical workflow in partial breast irradiation (PBI), fast, accurate and automated target delineation is desired. In this study, we develop a saliency-based deep learning segmentation (SDL-Seg) algorithm by incorporating prior domain knowledge for automatic gross tumor volume (GTV) delineation in post-op breast irradiation. |
abstract_unstemmed |
To accommodate an efficient clinical workflow in partial breast irradiation (PBI), fast, accurate and automated target delineation is desired. In this study, we develop a saliency-based deep learning segmentation (SDL-Seg) algorithm by incorporating prior domain knowledge for automatic gross tumor volume (GTV) delineation in post-op breast irradiation. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA |
container_issue |
3 |
title_short |
Saliency-Guided Deep Learning Network for Automatic Target Delineation in Post-Operative Stereotactic Partial Breast Irradiation |
url |
https://doi.org/10.1016/j.ijrobp.2021.07.519 |
remote_bool |
true |
author2 |
Chi, W. Rahimi, A.S. Kim, N. Alluri, P.G. Nwachukwu, C.R. Lu, W. Gu, X. |
author2Str |
Chi, W. Rahimi, A.S. Kim, N. Alluri, P.G. Nwachukwu, C.R. Lu, W. Gu, X. |
ppnlink |
ELV000113948 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1016/j.ijrobp.2021.07.519 |
up_date |
2024-07-06T18:06:50.788Z |
_version_ |
1803853979491237888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055643744</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624222828.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijrobp.2021.07.519</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001678.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055643744</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3016(21)01389-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kazemimoghadam, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Saliency-Guided Deep Learning Network for Automatic Target Delineation in Post-Operative Stereotactic Partial Breast Irradiation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To accommodate an efficient clinical workflow in partial breast irradiation (PBI), fast, accurate and automated target delineation is desired. In this study, we develop a saliency-based deep learning segmentation (SDL-Seg) algorithm by incorporating prior domain knowledge for automatic gross tumor volume (GTV) delineation in post-op breast irradiation.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chi, W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rahimi, A.S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alluri, P.G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nwachukwu, C.R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, X.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Wu, Yanyang ELSEVIER</subfield><subfield code="t">Xiaokeping-induced autophagy protects pancreatic β-cells against apoptosis under high glucose stress</subfield><subfield code="d">2018</subfield><subfield code="d">the official journal of the American Society for Therapeutic Radiology and Oncology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000113948</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:111</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:1</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:112</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijrobp.2021.07.519</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">111</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">1</subfield><subfield code="c">1101</subfield><subfield code="h">112</subfield><subfield code="y">111.2021, 3, e112-</subfield></datafield></record></collection>
|
score |
7.400923 |