Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion
Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion proces...
Ausführliche Beschreibung
Autor*in: |
Wang, Xiqing [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality - Ren, Chunhui ELSEVIER, 2022, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:301 ; year:2022 ; day:1 ; month:01 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jenvman.2021.113914 |
---|
Katalog-ID: |
ELV055696112 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV055696112 | ||
003 | DE-627 | ||
005 | 20230626042022.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220105s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jenvman.2021.113914 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001929.pica |
035 | |a (DE-627)ELV055696112 | ||
035 | |a (ELSEVIER)S0301-4797(21)01976-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 300 |q VZ |
084 | |a 70.00 |2 bkl | ||
084 | |a 71.00 |2 bkl | ||
100 | 1 | |a Wang, Xiqing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance. | ||
520 | |a Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance. | ||
650 | 7 | |a Electron accepting/donating capacity |2 Elsevier | |
650 | 7 | |a Bio-waste management |2 Elsevier | |
650 | 7 | |a Anaerobic process |2 Elsevier | |
650 | 7 | |a Humic substance |2 Elsevier | |
650 | 7 | |a Anaerobic microbial community |2 Elsevier | |
700 | 1 | |a Lyu, Tao |4 oth | |
700 | 1 | |a Dong, Renjie |4 oth | |
700 | 1 | |a Wu, Shubiao |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Ren, Chunhui ELSEVIER |t Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |d 2022 |g Amsterdam [u.a.] |w (DE-627)ELV008002754 |
773 | 1 | 8 | |g volume:301 |g year:2022 |g day:1 |g month:01 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jenvman.2021.113914 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 70.00 |j Sozialwissenschaften allgemein: Allgemeines |q VZ |
936 | b | k | |a 71.00 |j Soziologie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 301 |j 2022 |b 1 |c 0101 |h 0 |
author_variant |
x w xw |
---|---|
matchkey_str |
wangxiqinglyutaodongrenjiewushubiao:2022----:eelnteikeweeouinflcrnrnfraaiyfuiaiadeezmat |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
70.00 71.00 |
publishDate |
2022 |
allfields |
10.1016/j.jenvman.2021.113914 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001929.pica (DE-627)ELV055696112 (ELSEVIER)S0301-4797(21)01976-9 DE-627 ger DE-627 rakwb eng 300 VZ 70.00 bkl 71.00 bkl Wang, Xiqing verfasserin aut Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance. Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance. Electron accepting/donating capacity Elsevier Bio-waste management Elsevier Anaerobic process Elsevier Humic substance Elsevier Anaerobic microbial community Elsevier Lyu, Tao oth Dong, Renjie oth Wu, Shubiao oth Enthalten in Elsevier Ren, Chunhui ELSEVIER Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality 2022 Amsterdam [u.a.] (DE-627)ELV008002754 volume:301 year:2022 day:1 month:01 pages:0 https://doi.org/10.1016/j.jenvman.2021.113914 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 301 2022 1 0101 0 |
spelling |
10.1016/j.jenvman.2021.113914 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001929.pica (DE-627)ELV055696112 (ELSEVIER)S0301-4797(21)01976-9 DE-627 ger DE-627 rakwb eng 300 VZ 70.00 bkl 71.00 bkl Wang, Xiqing verfasserin aut Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance. Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance. Electron accepting/donating capacity Elsevier Bio-waste management Elsevier Anaerobic process Elsevier Humic substance Elsevier Anaerobic microbial community Elsevier Lyu, Tao oth Dong, Renjie oth Wu, Shubiao oth Enthalten in Elsevier Ren, Chunhui ELSEVIER Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality 2022 Amsterdam [u.a.] (DE-627)ELV008002754 volume:301 year:2022 day:1 month:01 pages:0 https://doi.org/10.1016/j.jenvman.2021.113914 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 301 2022 1 0101 0 |
allfields_unstemmed |
10.1016/j.jenvman.2021.113914 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001929.pica (DE-627)ELV055696112 (ELSEVIER)S0301-4797(21)01976-9 DE-627 ger DE-627 rakwb eng 300 VZ 70.00 bkl 71.00 bkl Wang, Xiqing verfasserin aut Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance. Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance. Electron accepting/donating capacity Elsevier Bio-waste management Elsevier Anaerobic process Elsevier Humic substance Elsevier Anaerobic microbial community Elsevier Lyu, Tao oth Dong, Renjie oth Wu, Shubiao oth Enthalten in Elsevier Ren, Chunhui ELSEVIER Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality 2022 Amsterdam [u.a.] (DE-627)ELV008002754 volume:301 year:2022 day:1 month:01 pages:0 https://doi.org/10.1016/j.jenvman.2021.113914 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 301 2022 1 0101 0 |
allfieldsGer |
10.1016/j.jenvman.2021.113914 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001929.pica (DE-627)ELV055696112 (ELSEVIER)S0301-4797(21)01976-9 DE-627 ger DE-627 rakwb eng 300 VZ 70.00 bkl 71.00 bkl Wang, Xiqing verfasserin aut Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance. Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance. Electron accepting/donating capacity Elsevier Bio-waste management Elsevier Anaerobic process Elsevier Humic substance Elsevier Anaerobic microbial community Elsevier Lyu, Tao oth Dong, Renjie oth Wu, Shubiao oth Enthalten in Elsevier Ren, Chunhui ELSEVIER Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality 2022 Amsterdam [u.a.] (DE-627)ELV008002754 volume:301 year:2022 day:1 month:01 pages:0 https://doi.org/10.1016/j.jenvman.2021.113914 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 301 2022 1 0101 0 |
allfieldsSound |
10.1016/j.jenvman.2021.113914 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001929.pica (DE-627)ELV055696112 (ELSEVIER)S0301-4797(21)01976-9 DE-627 ger DE-627 rakwb eng 300 VZ 70.00 bkl 71.00 bkl Wang, Xiqing verfasserin aut Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance. Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance. Electron accepting/donating capacity Elsevier Bio-waste management Elsevier Anaerobic process Elsevier Humic substance Elsevier Anaerobic microbial community Elsevier Lyu, Tao oth Dong, Renjie oth Wu, Shubiao oth Enthalten in Elsevier Ren, Chunhui ELSEVIER Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality 2022 Amsterdam [u.a.] (DE-627)ELV008002754 volume:301 year:2022 day:1 month:01 pages:0 https://doi.org/10.1016/j.jenvman.2021.113914 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 70.00 Sozialwissenschaften allgemein: Allgemeines VZ 71.00 Soziologie: Allgemeines VZ AR 301 2022 1 0101 0 |
language |
English |
source |
Enthalten in Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality Amsterdam [u.a.] volume:301 year:2022 day:1 month:01 pages:0 |
sourceStr |
Enthalten in Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality Amsterdam [u.a.] volume:301 year:2022 day:1 month:01 pages:0 |
format_phy_str_mv |
Article |
bklname |
Sozialwissenschaften allgemein: Allgemeines Soziologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Electron accepting/donating capacity Bio-waste management Anaerobic process Humic substance Anaerobic microbial community |
dewey-raw |
300 |
isfreeaccess_bool |
false |
container_title |
Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |
authorswithroles_txt_mv |
Wang, Xiqing @@aut@@ Lyu, Tao @@oth@@ Dong, Renjie @@oth@@ Wu, Shubiao @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV008002754 |
dewey-sort |
3300 |
id |
ELV055696112 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055696112</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626042022.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jenvman.2021.113914</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001929.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055696112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0301-4797(21)01976-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">71.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Xiqing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electron accepting/donating capacity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bio-waste management</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Anaerobic process</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Humic substance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Anaerobic microbial community</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lyu, Tao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Renjie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Shubiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Ren, Chunhui ELSEVIER</subfield><subfield code="t">Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008002754</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:301</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jenvman.2021.113914</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">70.00</subfield><subfield code="j">Sozialwissenschaften allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">71.00</subfield><subfield code="j">Soziologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">301</subfield><subfield code="j">2022</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Wang, Xiqing |
spellingShingle |
Wang, Xiqing ddc 300 bkl 70.00 bkl 71.00 Elsevier Electron accepting/donating capacity Elsevier Bio-waste management Elsevier Anaerobic process Elsevier Humic substance Elsevier Anaerobic microbial community Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion |
authorStr |
Wang, Xiqing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV008002754 |
format |
electronic Article |
dewey-ones |
300 - Social sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
300 VZ 70.00 bkl 71.00 bkl Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion Electron accepting/donating capacity Elsevier Bio-waste management Elsevier Anaerobic process Elsevier Humic substance Elsevier Anaerobic microbial community Elsevier |
topic |
ddc 300 bkl 70.00 bkl 71.00 Elsevier Electron accepting/donating capacity Elsevier Bio-waste management Elsevier Anaerobic process Elsevier Humic substance Elsevier Anaerobic microbial community |
topic_unstemmed |
ddc 300 bkl 70.00 bkl 71.00 Elsevier Electron accepting/donating capacity Elsevier Bio-waste management Elsevier Anaerobic process Elsevier Humic substance Elsevier Anaerobic microbial community |
topic_browse |
ddc 300 bkl 70.00 bkl 71.00 Elsevier Electron accepting/donating capacity Elsevier Bio-waste management Elsevier Anaerobic process Elsevier Humic substance Elsevier Anaerobic microbial community |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
t l tl r d rd s w sw |
hierarchy_parent_title |
Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |
hierarchy_parent_id |
ELV008002754 |
dewey-tens |
300 - Social sciences, sociology & anthropology |
hierarchy_top_title |
Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV008002754 |
title |
Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion |
ctrlnum |
(DE-627)ELV055696112 (ELSEVIER)S0301-4797(21)01976-9 |
title_full |
Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion |
author_sort |
Wang, Xiqing |
journal |
Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |
journalStr |
Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Wang, Xiqing |
container_volume |
301 |
class |
300 VZ 70.00 bkl 71.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Xiqing |
doi_str_mv |
10.1016/j.jenvman.2021.113914 |
dewey-full |
300 |
title_sort |
revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion |
title_auth |
Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion |
abstract |
Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance. |
abstractGer |
Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance. |
abstract_unstemmed |
Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion |
url |
https://doi.org/10.1016/j.jenvman.2021.113914 |
remote_bool |
true |
author2 |
Lyu, Tao Dong, Renjie Wu, Shubiao |
author2Str |
Lyu, Tao Dong, Renjie Wu, Shubiao |
ppnlink |
ELV008002754 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.jenvman.2021.113914 |
up_date |
2024-07-06T18:16:23.303Z |
_version_ |
1803854579817775104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055696112</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626042022.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jenvman.2021.113914</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001929.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055696112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0301-4797(21)01976-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">71.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Xiqing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671–1479 μmol gHA−1) and thermophilic (774–1506 μmol gHA−1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electron accepting/donating capacity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bio-waste management</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Anaerobic process</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Humic substance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Anaerobic microbial community</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lyu, Tao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Renjie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Shubiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Ren, Chunhui ELSEVIER</subfield><subfield code="t">Cohort, signaling, and early-career dynamics: The hidden significance of class in black-white earnings inequality</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008002754</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:301</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jenvman.2021.113914</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">70.00</subfield><subfield code="j">Sozialwissenschaften allgemein: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">71.00</subfield><subfield code="j">Soziologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">301</subfield><subfield code="j">2022</subfield><subfield code="b">1</subfield><subfield code="c">0101</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.399884 |