Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning
• We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficien...
Ausführliche Beschreibung
Autor*in: |
Wu, Huazheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Übergeordnetes Werk: |
Enthalten in: Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel - Pratap Singh, Ajeet ELSEVIER, 2020, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:149 ; year:2022 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.optlaseng.2021.106819 |
---|
Katalog-ID: |
ELV055709524 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV055709524 | ||
003 | DE-627 | ||
005 | 20230626042035.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220105s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.optlaseng.2021.106819 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001565.pica |
035 | |a (DE-627)ELV055709524 | ||
035 | |a (ELSEVIER)S0143-8166(21)00289-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 50.70 |2 bkl | ||
084 | |a 83.65 |2 bkl | ||
084 | |a 52.57 |2 bkl | ||
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Wu, Huazheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible. | ||
520 | |a • We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible. | ||
700 | 1 | |a Meng, Xiangfeng |4 oth | |
700 | 1 | |a Yang, Xiulun |4 oth | |
700 | 1 | |a Li, Xianye |4 oth | |
700 | 1 | |a Yin, Yongkai |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Pratap Singh, Ajeet ELSEVIER |t Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel |d 2020 |g Amsterdam [u.a.] |w (DE-627)ELV004269535 |
773 | 1 | 8 | |g volume:149 |g year:2022 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.optlaseng.2021.106819 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 50.70 |j Energie: Allgemeines |q VZ |
936 | b | k | |a 83.65 |j Versorgungswirtschaft |q VZ |
936 | b | k | |a 52.57 |j Energiespeicherung |q VZ |
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 149 |j 2022 |h 0 |
author_variant |
h w hw |
---|---|
matchkey_str |
wuhuazhengmengxiangfengyangxiulunlixiany:2022----:igehtelieiheouinmgntruhyaitrim |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
50.70 83.65 52.57 52.56 |
publishDate |
2022 |
allfields |
10.1016/j.optlaseng.2021.106819 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001565.pica (DE-627)ELV055709524 (ELSEVIER)S0143-8166(21)00289-X DE-627 ger DE-627 rakwb eng 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Wu, Huazheng verfasserin aut Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible. • We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible. Meng, Xiangfeng oth Yang, Xiulun oth Li, Xianye oth Yin, Yongkai oth Enthalten in Elsevier Science Pratap Singh, Ajeet ELSEVIER Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel 2020 Amsterdam [u.a.] (DE-627)ELV004269535 volume:149 year:2022 pages:0 https://doi.org/10.1016/j.optlaseng.2021.106819 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 149 2022 0 |
spelling |
10.1016/j.optlaseng.2021.106819 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001565.pica (DE-627)ELV055709524 (ELSEVIER)S0143-8166(21)00289-X DE-627 ger DE-627 rakwb eng 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Wu, Huazheng verfasserin aut Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible. • We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible. Meng, Xiangfeng oth Yang, Xiulun oth Li, Xianye oth Yin, Yongkai oth Enthalten in Elsevier Science Pratap Singh, Ajeet ELSEVIER Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel 2020 Amsterdam [u.a.] (DE-627)ELV004269535 volume:149 year:2022 pages:0 https://doi.org/10.1016/j.optlaseng.2021.106819 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 149 2022 0 |
allfields_unstemmed |
10.1016/j.optlaseng.2021.106819 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001565.pica (DE-627)ELV055709524 (ELSEVIER)S0143-8166(21)00289-X DE-627 ger DE-627 rakwb eng 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Wu, Huazheng verfasserin aut Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible. • We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible. Meng, Xiangfeng oth Yang, Xiulun oth Li, Xianye oth Yin, Yongkai oth Enthalten in Elsevier Science Pratap Singh, Ajeet ELSEVIER Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel 2020 Amsterdam [u.a.] (DE-627)ELV004269535 volume:149 year:2022 pages:0 https://doi.org/10.1016/j.optlaseng.2021.106819 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 149 2022 0 |
allfieldsGer |
10.1016/j.optlaseng.2021.106819 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001565.pica (DE-627)ELV055709524 (ELSEVIER)S0143-8166(21)00289-X DE-627 ger DE-627 rakwb eng 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Wu, Huazheng verfasserin aut Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible. • We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible. Meng, Xiangfeng oth Yang, Xiulun oth Li, Xianye oth Yin, Yongkai oth Enthalten in Elsevier Science Pratap Singh, Ajeet ELSEVIER Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel 2020 Amsterdam [u.a.] (DE-627)ELV004269535 volume:149 year:2022 pages:0 https://doi.org/10.1016/j.optlaseng.2021.106819 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 149 2022 0 |
allfieldsSound |
10.1016/j.optlaseng.2021.106819 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001565.pica (DE-627)ELV055709524 (ELSEVIER)S0143-8166(21)00289-X DE-627 ger DE-627 rakwb eng 620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Wu, Huazheng verfasserin aut Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible. • We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible. Meng, Xiangfeng oth Yang, Xiulun oth Li, Xianye oth Yin, Yongkai oth Enthalten in Elsevier Science Pratap Singh, Ajeet ELSEVIER Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel 2020 Amsterdam [u.a.] (DE-627)ELV004269535 volume:149 year:2022 pages:0 https://doi.org/10.1016/j.optlaseng.2021.106819 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.70 Energie: Allgemeines VZ 83.65 Versorgungswirtschaft VZ 52.57 Energiespeicherung VZ 52.56 Regenerative Energieformen alternative Energieformen VZ AR 149 2022 0 |
language |
English |
source |
Enthalten in Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel Amsterdam [u.a.] volume:149 year:2022 pages:0 |
sourceStr |
Enthalten in Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel Amsterdam [u.a.] volume:149 year:2022 pages:0 |
format_phy_str_mv |
Article |
bklname |
Energie: Allgemeines Versorgungswirtschaft Energiespeicherung Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel |
authorswithroles_txt_mv |
Wu, Huazheng @@aut@@ Meng, Xiangfeng @@oth@@ Yang, Xiulun @@oth@@ Li, Xianye @@oth@@ Yin, Yongkai @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV004269535 |
dewey-sort |
3620 |
id |
ELV055709524 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055709524</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626042035.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optlaseng.2021.106819</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001565.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055709524</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0143-8166(21)00289-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.65</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.57</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Huazheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Xiangfeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xiulun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xianye</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Yongkai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Pratap Singh, Ajeet ELSEVIER</subfield><subfield code="t">Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV004269535</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:149</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.optlaseng.2021.106819</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.65</subfield><subfield code="j">Versorgungswirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.57</subfield><subfield code="j">Energiespeicherung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">149</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Wu, Huazheng |
spellingShingle |
Wu, Huazheng ddc 620 bkl 50.70 bkl 83.65 bkl 52.57 bkl 52.56 Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning |
authorStr |
Wu, Huazheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV004269535 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning |
topic |
ddc 620 bkl 50.70 bkl 83.65 bkl 52.57 bkl 52.56 |
topic_unstemmed |
ddc 620 bkl 50.70 bkl 83.65 bkl 52.57 bkl 52.56 |
topic_browse |
ddc 620 bkl 50.70 bkl 83.65 bkl 52.57 bkl 52.56 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
x m xm x y xy x l xl y y yy |
hierarchy_parent_title |
Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel |
hierarchy_parent_id |
ELV004269535 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV004269535 |
title |
Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning |
ctrlnum |
(DE-627)ELV055709524 (ELSEVIER)S0143-8166(21)00289-X |
title_full |
Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning |
author_sort |
Wu, Huazheng |
journal |
Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel |
journalStr |
Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Wu, Huazheng |
container_volume |
149 |
class |
620 VZ 50.70 bkl 83.65 bkl 52.57 bkl 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wu, Huazheng |
doi_str_mv |
10.1016/j.optlaseng.2021.106819 |
dewey-full |
620 |
title_sort |
single shot real-time high-resolution imaging through dynamic turbid media based on deep learning |
title_auth |
Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning |
abstract |
• We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible. |
abstractGer |
• We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible. |
abstract_unstemmed |
• We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning |
url |
https://doi.org/10.1016/j.optlaseng.2021.106819 |
remote_bool |
true |
author2 |
Meng, Xiangfeng Yang, Xiulun Li, Xianye Yin, Yongkai |
author2Str |
Meng, Xiangfeng Yang, Xiulun Li, Xianye Yin, Yongkai |
ppnlink |
ELV004269535 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.optlaseng.2021.106819 |
up_date |
2024-07-06T18:18:46.731Z |
_version_ |
1803854730211885057 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055709524</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626042035.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optlaseng.2021.106819</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001565.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055709524</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0143-8166(21)00289-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.65</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.57</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Huazheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• We scrutinize the Fourier-domain shower-curtain effect (FDSE)-related noise model, which makes it possible to simulate adequate training data to learn FDSE correlography problems. • Without knowing the experimental scene, the generated convolutional neural network (CNN) is computationally efficient and extremely robust to various forms of noise, far exceeding the capabilities of existing algorithms. • The targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure. Optical experiments have proved that in dynamic turbid media, the real-time high-resolution imaging with a single lens is possible.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Xiangfeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xiulun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xianye</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Yongkai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Pratap Singh, Ajeet ELSEVIER</subfield><subfield code="t">Performance enhancement strategies of a hybrid solar chimney power plant integrated with photovoltaic panel</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV004269535</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:149</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.optlaseng.2021.106819</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.65</subfield><subfield code="j">Versorgungswirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.57</subfield><subfield code="j">Energiespeicherung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">149</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401125 |