Numerical simulation for deformation of laminates combining the novel shell element with the decoupled two-scale viscoelastic analysis of FRP
This study proposes a numerical simulation for the deformation of laminates incorporating a combination of the novel shell element, whose thickness is allowed to change in a macro-scale model, with a decoupled two-scale viscoelastic analysis of FRP. The dependence of resin properties on the degree o...
Ausführliche Beschreibung
Autor*in: |
Yamamoto, Takeki [verfasserIn] Okabe, Tomonaga [verfasserIn] Terada, Kenjiro [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of solids and structures - New York, NY [u.a.] : Elsevier, 1965, 234 |
---|---|
Übergeordnetes Werk: |
volume:234 |
DOI / URN: |
10.1016/j.ijsolstr.2021.111236 |
---|
Katalog-ID: |
ELV055728979 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV055728979 | ||
003 | DE-627 | ||
005 | 20240102093027.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220105s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijsolstr.2021.111236 |2 doi | |
035 | |a (DE-627)ELV055728979 | ||
035 | |a (ELSEVIER)S0020-7683(21)00323-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 50.31 |2 bkl | ||
100 | 1 | |a Yamamoto, Takeki |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical simulation for deformation of laminates combining the novel shell element with the decoupled two-scale viscoelastic analysis of FRP |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This study proposes a numerical simulation for the deformation of laminates incorporating a combination of the novel shell element, whose thickness is allowed to change in a macro-scale model, with a decoupled two-scale viscoelastic analysis of FRP. The dependence of resin properties on the degree of cure (DOC) is considered in the simulation. Because the shell element of interest is enriched with degrees of freedom (DOFs) to represent the transverse deformations, it is capable of evaluating and controlling the thickness change during curing process of laminates. Since the additional DOFs are introduced to each element independently, they are condensed out at the element level in assembling the global finite element (FE) equation. Besides the force, the displacement can also be imposed on the outermost DOFs to control the change in thickness. Thus, numerical simulations where the plate thickness is controlled according to the requirements for molded products can be realized without introducing solid-shell-type formulations. The macroscopic mechanical behavior of FRP can be represented by the orthotropic version of the model employed for resin whose DOC-dependent macroscopic viscoelastic properties (the macroscopic coefficient of thermal expansions (CTEs) and coefficient of cure shrinkages (CCSs)) are identified from the relaxation curves obtained by results of numerical material tests (NMTs) conducted on the periodic microstructure (unit cell). The usefulness of the proposed approach was clarified by the results of the numerical verifications. | ||
650 | 4 | |a Finite element method | |
650 | 4 | |a Shell element | |
650 | 4 | |a Thickness-stretch | |
650 | 4 | |a FRP | |
650 | 4 | |a Viscoelastic | |
650 | 4 | |a Homogenization | |
650 | 4 | |a Multiscale analysis | |
700 | 1 | |a Okabe, Tomonaga |e verfasserin |4 aut | |
700 | 1 | |a Terada, Kenjiro |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of solids and structures |d New York, NY [u.a.] : Elsevier, 1965 |g 234 |h Online-Ressource |w (DE-627)31972039X |w (DE-600)2012750-9 |w (DE-576)259271403 |7 nnns |
773 | 1 | 8 | |g volume:234 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.31 |j Technische Mechanik |q VZ |
951 | |a AR | ||
952 | |d 234 |
author_variant |
t y ty t o to k t kt |
---|---|
matchkey_str |
yamamototakekiokabetomonagateradakenjiro:2021----:ueiasmltofreomtoolmntsobnnteoesellmnwtteeopet |
hierarchy_sort_str |
2021 |
bklnumber |
50.31 |
publishDate |
2021 |
allfields |
10.1016/j.ijsolstr.2021.111236 doi (DE-627)ELV055728979 (ELSEVIER)S0020-7683(21)00323-1 DE-627 ger DE-627 rda eng 530 VZ 50.31 bkl Yamamoto, Takeki verfasserin aut Numerical simulation for deformation of laminates combining the novel shell element with the decoupled two-scale viscoelastic analysis of FRP 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study proposes a numerical simulation for the deformation of laminates incorporating a combination of the novel shell element, whose thickness is allowed to change in a macro-scale model, with a decoupled two-scale viscoelastic analysis of FRP. The dependence of resin properties on the degree of cure (DOC) is considered in the simulation. Because the shell element of interest is enriched with degrees of freedom (DOFs) to represent the transverse deformations, it is capable of evaluating and controlling the thickness change during curing process of laminates. Since the additional DOFs are introduced to each element independently, they are condensed out at the element level in assembling the global finite element (FE) equation. Besides the force, the displacement can also be imposed on the outermost DOFs to control the change in thickness. Thus, numerical simulations where the plate thickness is controlled according to the requirements for molded products can be realized without introducing solid-shell-type formulations. The macroscopic mechanical behavior of FRP can be represented by the orthotropic version of the model employed for resin whose DOC-dependent macroscopic viscoelastic properties (the macroscopic coefficient of thermal expansions (CTEs) and coefficient of cure shrinkages (CCSs)) are identified from the relaxation curves obtained by results of numerical material tests (NMTs) conducted on the periodic microstructure (unit cell). The usefulness of the proposed approach was clarified by the results of the numerical verifications. Finite element method Shell element Thickness-stretch FRP Viscoelastic Homogenization Multiscale analysis Okabe, Tomonaga verfasserin aut Terada, Kenjiro verfasserin aut Enthalten in International journal of solids and structures New York, NY [u.a.] : Elsevier, 1965 234 Online-Ressource (DE-627)31972039X (DE-600)2012750-9 (DE-576)259271403 nnns volume:234 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 50.31 Technische Mechanik VZ AR 234 |
spelling |
10.1016/j.ijsolstr.2021.111236 doi (DE-627)ELV055728979 (ELSEVIER)S0020-7683(21)00323-1 DE-627 ger DE-627 rda eng 530 VZ 50.31 bkl Yamamoto, Takeki verfasserin aut Numerical simulation for deformation of laminates combining the novel shell element with the decoupled two-scale viscoelastic analysis of FRP 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study proposes a numerical simulation for the deformation of laminates incorporating a combination of the novel shell element, whose thickness is allowed to change in a macro-scale model, with a decoupled two-scale viscoelastic analysis of FRP. The dependence of resin properties on the degree of cure (DOC) is considered in the simulation. Because the shell element of interest is enriched with degrees of freedom (DOFs) to represent the transverse deformations, it is capable of evaluating and controlling the thickness change during curing process of laminates. Since the additional DOFs are introduced to each element independently, they are condensed out at the element level in assembling the global finite element (FE) equation. Besides the force, the displacement can also be imposed on the outermost DOFs to control the change in thickness. Thus, numerical simulations where the plate thickness is controlled according to the requirements for molded products can be realized without introducing solid-shell-type formulations. The macroscopic mechanical behavior of FRP can be represented by the orthotropic version of the model employed for resin whose DOC-dependent macroscopic viscoelastic properties (the macroscopic coefficient of thermal expansions (CTEs) and coefficient of cure shrinkages (CCSs)) are identified from the relaxation curves obtained by results of numerical material tests (NMTs) conducted on the periodic microstructure (unit cell). The usefulness of the proposed approach was clarified by the results of the numerical verifications. Finite element method Shell element Thickness-stretch FRP Viscoelastic Homogenization Multiscale analysis Okabe, Tomonaga verfasserin aut Terada, Kenjiro verfasserin aut Enthalten in International journal of solids and structures New York, NY [u.a.] : Elsevier, 1965 234 Online-Ressource (DE-627)31972039X (DE-600)2012750-9 (DE-576)259271403 nnns volume:234 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 50.31 Technische Mechanik VZ AR 234 |
allfields_unstemmed |
10.1016/j.ijsolstr.2021.111236 doi (DE-627)ELV055728979 (ELSEVIER)S0020-7683(21)00323-1 DE-627 ger DE-627 rda eng 530 VZ 50.31 bkl Yamamoto, Takeki verfasserin aut Numerical simulation for deformation of laminates combining the novel shell element with the decoupled two-scale viscoelastic analysis of FRP 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study proposes a numerical simulation for the deformation of laminates incorporating a combination of the novel shell element, whose thickness is allowed to change in a macro-scale model, with a decoupled two-scale viscoelastic analysis of FRP. The dependence of resin properties on the degree of cure (DOC) is considered in the simulation. Because the shell element of interest is enriched with degrees of freedom (DOFs) to represent the transverse deformations, it is capable of evaluating and controlling the thickness change during curing process of laminates. Since the additional DOFs are introduced to each element independently, they are condensed out at the element level in assembling the global finite element (FE) equation. Besides the force, the displacement can also be imposed on the outermost DOFs to control the change in thickness. Thus, numerical simulations where the plate thickness is controlled according to the requirements for molded products can be realized without introducing solid-shell-type formulations. The macroscopic mechanical behavior of FRP can be represented by the orthotropic version of the model employed for resin whose DOC-dependent macroscopic viscoelastic properties (the macroscopic coefficient of thermal expansions (CTEs) and coefficient of cure shrinkages (CCSs)) are identified from the relaxation curves obtained by results of numerical material tests (NMTs) conducted on the periodic microstructure (unit cell). The usefulness of the proposed approach was clarified by the results of the numerical verifications. Finite element method Shell element Thickness-stretch FRP Viscoelastic Homogenization Multiscale analysis Okabe, Tomonaga verfasserin aut Terada, Kenjiro verfasserin aut Enthalten in International journal of solids and structures New York, NY [u.a.] : Elsevier, 1965 234 Online-Ressource (DE-627)31972039X (DE-600)2012750-9 (DE-576)259271403 nnns volume:234 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 50.31 Technische Mechanik VZ AR 234 |
allfieldsGer |
10.1016/j.ijsolstr.2021.111236 doi (DE-627)ELV055728979 (ELSEVIER)S0020-7683(21)00323-1 DE-627 ger DE-627 rda eng 530 VZ 50.31 bkl Yamamoto, Takeki verfasserin aut Numerical simulation for deformation of laminates combining the novel shell element with the decoupled two-scale viscoelastic analysis of FRP 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study proposes a numerical simulation for the deformation of laminates incorporating a combination of the novel shell element, whose thickness is allowed to change in a macro-scale model, with a decoupled two-scale viscoelastic analysis of FRP. The dependence of resin properties on the degree of cure (DOC) is considered in the simulation. Because the shell element of interest is enriched with degrees of freedom (DOFs) to represent the transverse deformations, it is capable of evaluating and controlling the thickness change during curing process of laminates. Since the additional DOFs are introduced to each element independently, they are condensed out at the element level in assembling the global finite element (FE) equation. Besides the force, the displacement can also be imposed on the outermost DOFs to control the change in thickness. Thus, numerical simulations where the plate thickness is controlled according to the requirements for molded products can be realized without introducing solid-shell-type formulations. The macroscopic mechanical behavior of FRP can be represented by the orthotropic version of the model employed for resin whose DOC-dependent macroscopic viscoelastic properties (the macroscopic coefficient of thermal expansions (CTEs) and coefficient of cure shrinkages (CCSs)) are identified from the relaxation curves obtained by results of numerical material tests (NMTs) conducted on the periodic microstructure (unit cell). The usefulness of the proposed approach was clarified by the results of the numerical verifications. Finite element method Shell element Thickness-stretch FRP Viscoelastic Homogenization Multiscale analysis Okabe, Tomonaga verfasserin aut Terada, Kenjiro verfasserin aut Enthalten in International journal of solids and structures New York, NY [u.a.] : Elsevier, 1965 234 Online-Ressource (DE-627)31972039X (DE-600)2012750-9 (DE-576)259271403 nnns volume:234 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 50.31 Technische Mechanik VZ AR 234 |
allfieldsSound |
10.1016/j.ijsolstr.2021.111236 doi (DE-627)ELV055728979 (ELSEVIER)S0020-7683(21)00323-1 DE-627 ger DE-627 rda eng 530 VZ 50.31 bkl Yamamoto, Takeki verfasserin aut Numerical simulation for deformation of laminates combining the novel shell element with the decoupled two-scale viscoelastic analysis of FRP 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study proposes a numerical simulation for the deformation of laminates incorporating a combination of the novel shell element, whose thickness is allowed to change in a macro-scale model, with a decoupled two-scale viscoelastic analysis of FRP. The dependence of resin properties on the degree of cure (DOC) is considered in the simulation. Because the shell element of interest is enriched with degrees of freedom (DOFs) to represent the transverse deformations, it is capable of evaluating and controlling the thickness change during curing process of laminates. Since the additional DOFs are introduced to each element independently, they are condensed out at the element level in assembling the global finite element (FE) equation. Besides the force, the displacement can also be imposed on the outermost DOFs to control the change in thickness. Thus, numerical simulations where the plate thickness is controlled according to the requirements for molded products can be realized without introducing solid-shell-type formulations. The macroscopic mechanical behavior of FRP can be represented by the orthotropic version of the model employed for resin whose DOC-dependent macroscopic viscoelastic properties (the macroscopic coefficient of thermal expansions (CTEs) and coefficient of cure shrinkages (CCSs)) are identified from the relaxation curves obtained by results of numerical material tests (NMTs) conducted on the periodic microstructure (unit cell). The usefulness of the proposed approach was clarified by the results of the numerical verifications. Finite element method Shell element Thickness-stretch FRP Viscoelastic Homogenization Multiscale analysis Okabe, Tomonaga verfasserin aut Terada, Kenjiro verfasserin aut Enthalten in International journal of solids and structures New York, NY [u.a.] : Elsevier, 1965 234 Online-Ressource (DE-627)31972039X (DE-600)2012750-9 (DE-576)259271403 nnns volume:234 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 50.31 Technische Mechanik VZ AR 234 |
language |
English |
source |
Enthalten in International journal of solids and structures 234 volume:234 |
sourceStr |
Enthalten in International journal of solids and structures 234 volume:234 |
format_phy_str_mv |
Article |
bklname |
Technische Mechanik |
institution |
findex.gbv.de |
topic_facet |
Finite element method Shell element Thickness-stretch FRP Viscoelastic Homogenization Multiscale analysis |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of solids and structures |
authorswithroles_txt_mv |
Yamamoto, Takeki @@aut@@ Okabe, Tomonaga @@aut@@ Terada, Kenjiro @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
31972039X |
dewey-sort |
3530 |
id |
ELV055728979 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055728979</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240102093027.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijsolstr.2021.111236</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055728979</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7683(21)00323-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yamamoto, Takeki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical simulation for deformation of laminates combining the novel shell element with the decoupled two-scale viscoelastic analysis of FRP</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study proposes a numerical simulation for the deformation of laminates incorporating a combination of the novel shell element, whose thickness is allowed to change in a macro-scale model, with a decoupled two-scale viscoelastic analysis of FRP. The dependence of resin properties on the degree of cure (DOC) is considered in the simulation. Because the shell element of interest is enriched with degrees of freedom (DOFs) to represent the transverse deformations, it is capable of evaluating and controlling the thickness change during curing process of laminates. Since the additional DOFs are introduced to each element independently, they are condensed out at the element level in assembling the global finite element (FE) equation. Besides the force, the displacement can also be imposed on the outermost DOFs to control the change in thickness. Thus, numerical simulations where the plate thickness is controlled according to the requirements for molded products can be realized without introducing solid-shell-type formulations. The macroscopic mechanical behavior of FRP can be represented by the orthotropic version of the model employed for resin whose DOC-dependent macroscopic viscoelastic properties (the macroscopic coefficient of thermal expansions (CTEs) and coefficient of cure shrinkages (CCSs)) are identified from the relaxation curves obtained by results of numerical material tests (NMTs) conducted on the periodic microstructure (unit cell). The usefulness of the proposed approach was clarified by the results of the numerical verifications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shell element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thickness-stretch</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FRP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogenization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiscale analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okabe, Tomonaga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Terada, Kenjiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of solids and structures</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1965</subfield><subfield code="g">234</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)31972039X</subfield><subfield code="w">(DE-600)2012750-9</subfield><subfield code="w">(DE-576)259271403</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:234</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">234</subfield></datafield></record></collection>
|
author |
Yamamoto, Takeki |
spellingShingle |
Yamamoto, Takeki ddc 530 bkl 50.31 misc Finite element method misc Shell element misc Thickness-stretch misc FRP misc Viscoelastic misc Homogenization misc Multiscale analysis Numerical simulation for deformation of laminates combining the novel shell element with the decoupled two-scale viscoelastic analysis of FRP |
authorStr |
Yamamoto, Takeki |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)31972039X |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 VZ 50.31 bkl Numerical simulation for deformation of laminates combining the novel shell element with the decoupled two-scale viscoelastic analysis of FRP Finite element method Shell element Thickness-stretch FRP Viscoelastic Homogenization Multiscale analysis |
topic |
ddc 530 bkl 50.31 misc Finite element method misc Shell element misc Thickness-stretch misc FRP misc Viscoelastic misc Homogenization misc Multiscale analysis |
topic_unstemmed |
ddc 530 bkl 50.31 misc Finite element method misc Shell element misc Thickness-stretch misc FRP misc Viscoelastic misc Homogenization misc Multiscale analysis |
topic_browse |
ddc 530 bkl 50.31 misc Finite element method misc Shell element misc Thickness-stretch misc FRP misc Viscoelastic misc Homogenization misc Multiscale analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of solids and structures |
hierarchy_parent_id |
31972039X |
dewey-tens |
530 - Physics |
hierarchy_top_title |
International journal of solids and structures |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)31972039X (DE-600)2012750-9 (DE-576)259271403 |
title |
Numerical simulation for deformation of laminates combining the novel shell element with the decoupled two-scale viscoelastic analysis of FRP |
ctrlnum |
(DE-627)ELV055728979 (ELSEVIER)S0020-7683(21)00323-1 |
title_full |
Numerical simulation for deformation of laminates combining the novel shell element with the decoupled two-scale viscoelastic analysis of FRP |
author_sort |
Yamamoto, Takeki |
journal |
International journal of solids and structures |
journalStr |
International journal of solids and structures |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Yamamoto, Takeki Okabe, Tomonaga Terada, Kenjiro |
container_volume |
234 |
class |
530 VZ 50.31 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yamamoto, Takeki |
doi_str_mv |
10.1016/j.ijsolstr.2021.111236 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
numerical simulation for deformation of laminates combining the novel shell element with the decoupled two-scale viscoelastic analysis of frp |
title_auth |
Numerical simulation for deformation of laminates combining the novel shell element with the decoupled two-scale viscoelastic analysis of FRP |
abstract |
This study proposes a numerical simulation for the deformation of laminates incorporating a combination of the novel shell element, whose thickness is allowed to change in a macro-scale model, with a decoupled two-scale viscoelastic analysis of FRP. The dependence of resin properties on the degree of cure (DOC) is considered in the simulation. Because the shell element of interest is enriched with degrees of freedom (DOFs) to represent the transverse deformations, it is capable of evaluating and controlling the thickness change during curing process of laminates. Since the additional DOFs are introduced to each element independently, they are condensed out at the element level in assembling the global finite element (FE) equation. Besides the force, the displacement can also be imposed on the outermost DOFs to control the change in thickness. Thus, numerical simulations where the plate thickness is controlled according to the requirements for molded products can be realized without introducing solid-shell-type formulations. The macroscopic mechanical behavior of FRP can be represented by the orthotropic version of the model employed for resin whose DOC-dependent macroscopic viscoelastic properties (the macroscopic coefficient of thermal expansions (CTEs) and coefficient of cure shrinkages (CCSs)) are identified from the relaxation curves obtained by results of numerical material tests (NMTs) conducted on the periodic microstructure (unit cell). The usefulness of the proposed approach was clarified by the results of the numerical verifications. |
abstractGer |
This study proposes a numerical simulation for the deformation of laminates incorporating a combination of the novel shell element, whose thickness is allowed to change in a macro-scale model, with a decoupled two-scale viscoelastic analysis of FRP. The dependence of resin properties on the degree of cure (DOC) is considered in the simulation. Because the shell element of interest is enriched with degrees of freedom (DOFs) to represent the transverse deformations, it is capable of evaluating and controlling the thickness change during curing process of laminates. Since the additional DOFs are introduced to each element independently, they are condensed out at the element level in assembling the global finite element (FE) equation. Besides the force, the displacement can also be imposed on the outermost DOFs to control the change in thickness. Thus, numerical simulations where the plate thickness is controlled according to the requirements for molded products can be realized without introducing solid-shell-type formulations. The macroscopic mechanical behavior of FRP can be represented by the orthotropic version of the model employed for resin whose DOC-dependent macroscopic viscoelastic properties (the macroscopic coefficient of thermal expansions (CTEs) and coefficient of cure shrinkages (CCSs)) are identified from the relaxation curves obtained by results of numerical material tests (NMTs) conducted on the periodic microstructure (unit cell). The usefulness of the proposed approach was clarified by the results of the numerical verifications. |
abstract_unstemmed |
This study proposes a numerical simulation for the deformation of laminates incorporating a combination of the novel shell element, whose thickness is allowed to change in a macro-scale model, with a decoupled two-scale viscoelastic analysis of FRP. The dependence of resin properties on the degree of cure (DOC) is considered in the simulation. Because the shell element of interest is enriched with degrees of freedom (DOFs) to represent the transverse deformations, it is capable of evaluating and controlling the thickness change during curing process of laminates. Since the additional DOFs are introduced to each element independently, they are condensed out at the element level in assembling the global finite element (FE) equation. Besides the force, the displacement can also be imposed on the outermost DOFs to control the change in thickness. Thus, numerical simulations where the plate thickness is controlled according to the requirements for molded products can be realized without introducing solid-shell-type formulations. The macroscopic mechanical behavior of FRP can be represented by the orthotropic version of the model employed for resin whose DOC-dependent macroscopic viscoelastic properties (the macroscopic coefficient of thermal expansions (CTEs) and coefficient of cure shrinkages (CCSs)) are identified from the relaxation curves obtained by results of numerical material tests (NMTs) conducted on the periodic microstructure (unit cell). The usefulness of the proposed approach was clarified by the results of the numerical verifications. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Numerical simulation for deformation of laminates combining the novel shell element with the decoupled two-scale viscoelastic analysis of FRP |
remote_bool |
true |
author2 |
Okabe, Tomonaga Terada, Kenjiro |
author2Str |
Okabe, Tomonaga Terada, Kenjiro |
ppnlink |
31972039X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijsolstr.2021.111236 |
up_date |
2024-07-06T18:22:00.399Z |
_version_ |
1803854933289598976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055728979</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240102093027.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijsolstr.2021.111236</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055728979</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7683(21)00323-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yamamoto, Takeki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical simulation for deformation of laminates combining the novel shell element with the decoupled two-scale viscoelastic analysis of FRP</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study proposes a numerical simulation for the deformation of laminates incorporating a combination of the novel shell element, whose thickness is allowed to change in a macro-scale model, with a decoupled two-scale viscoelastic analysis of FRP. The dependence of resin properties on the degree of cure (DOC) is considered in the simulation. Because the shell element of interest is enriched with degrees of freedom (DOFs) to represent the transverse deformations, it is capable of evaluating and controlling the thickness change during curing process of laminates. Since the additional DOFs are introduced to each element independently, they are condensed out at the element level in assembling the global finite element (FE) equation. Besides the force, the displacement can also be imposed on the outermost DOFs to control the change in thickness. Thus, numerical simulations where the plate thickness is controlled according to the requirements for molded products can be realized without introducing solid-shell-type formulations. The macroscopic mechanical behavior of FRP can be represented by the orthotropic version of the model employed for resin whose DOC-dependent macroscopic viscoelastic properties (the macroscopic coefficient of thermal expansions (CTEs) and coefficient of cure shrinkages (CCSs)) are identified from the relaxation curves obtained by results of numerical material tests (NMTs) conducted on the periodic microstructure (unit cell). The usefulness of the proposed approach was clarified by the results of the numerical verifications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shell element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thickness-stretch</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FRP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogenization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiscale analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okabe, Tomonaga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Terada, Kenjiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of solids and structures</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1965</subfield><subfield code="g">234</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)31972039X</subfield><subfield code="w">(DE-600)2012750-9</subfield><subfield code="w">(DE-576)259271403</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:234</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">234</subfield></datafield></record></collection>
|
score |
7.401101 |