Complete objects in categories
We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively...
Ausführliche Beschreibung
Autor*in: |
Gray, James Richard Andrew [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Humeral position after reverse shoulder arthroplasty as measured by lateralization and distalization angles and association with acromial stress fracture; a case-control study - Hill, Jeffrey R. ELSEVIER, 2021, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:226 ; year:2022 ; number:4 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jpaa.2021.106857 |
---|
Katalog-ID: |
ELV055843433 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV055843433 | ||
003 | DE-627 | ||
005 | 20230626042236.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220105s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jpaa.2021.106857 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001579.pica |
035 | |a (DE-627)ELV055843433 | ||
035 | |a (ELSEVIER)S0022-4049(21)00198-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.83 |2 bkl | ||
100 | 1 | |a Gray, James Richard Andrew |e verfasserin |4 aut | |
245 | 1 | 0 | |a Complete objects in categories |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. | ||
520 | |a We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. | ||
650 | 7 | |a secondary |2 Elsevier | |
650 | 7 | |a 20D45 |2 Elsevier | |
650 | 7 | |a Primary |2 Elsevier | |
650 | 7 | |a 20E36 |2 Elsevier | |
773 | 0 | 8 | |i Enthalten in |n North-Holland, Elsevier Science |a Hill, Jeffrey R. ELSEVIER |t Humeral position after reverse shoulder arthroplasty as measured by lateralization and distalization angles and association with acromial stress fracture; a case-control study |d 2021 |g Amsterdam [u.a.] |w (DE-627)ELV007557035 |
773 | 1 | 8 | |g volume:226 |g year:2022 |g number:4 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jpaa.2021.106857 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.83 |j Rheumatologie |j Orthopädie |q VZ |
951 | |a AR | ||
952 | |d 226 |j 2022 |e 4 |h 0 |
author_variant |
j r a g jra jrag |
---|---|
matchkey_str |
grayjamesrichardandrew:2022----:opeebetic |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
44.83 |
publishDate |
2022 |
allfields |
10.1016/j.jpaa.2021.106857 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001579.pica (DE-627)ELV055843433 (ELSEVIER)S0022-4049(21)00198-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.83 bkl Gray, James Richard Andrew verfasserin aut Complete objects in categories 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. secondary Elsevier 20D45 Elsevier Primary Elsevier 20E36 Elsevier Enthalten in North-Holland, Elsevier Science Hill, Jeffrey R. ELSEVIER Humeral position after reverse shoulder arthroplasty as measured by lateralization and distalization angles and association with acromial stress fracture; a case-control study 2021 Amsterdam [u.a.] (DE-627)ELV007557035 volume:226 year:2022 number:4 pages:0 https://doi.org/10.1016/j.jpaa.2021.106857 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.83 Rheumatologie Orthopädie VZ AR 226 2022 4 0 |
spelling |
10.1016/j.jpaa.2021.106857 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001579.pica (DE-627)ELV055843433 (ELSEVIER)S0022-4049(21)00198-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.83 bkl Gray, James Richard Andrew verfasserin aut Complete objects in categories 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. secondary Elsevier 20D45 Elsevier Primary Elsevier 20E36 Elsevier Enthalten in North-Holland, Elsevier Science Hill, Jeffrey R. ELSEVIER Humeral position after reverse shoulder arthroplasty as measured by lateralization and distalization angles and association with acromial stress fracture; a case-control study 2021 Amsterdam [u.a.] (DE-627)ELV007557035 volume:226 year:2022 number:4 pages:0 https://doi.org/10.1016/j.jpaa.2021.106857 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.83 Rheumatologie Orthopädie VZ AR 226 2022 4 0 |
allfields_unstemmed |
10.1016/j.jpaa.2021.106857 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001579.pica (DE-627)ELV055843433 (ELSEVIER)S0022-4049(21)00198-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.83 bkl Gray, James Richard Andrew verfasserin aut Complete objects in categories 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. secondary Elsevier 20D45 Elsevier Primary Elsevier 20E36 Elsevier Enthalten in North-Holland, Elsevier Science Hill, Jeffrey R. ELSEVIER Humeral position after reverse shoulder arthroplasty as measured by lateralization and distalization angles and association with acromial stress fracture; a case-control study 2021 Amsterdam [u.a.] (DE-627)ELV007557035 volume:226 year:2022 number:4 pages:0 https://doi.org/10.1016/j.jpaa.2021.106857 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.83 Rheumatologie Orthopädie VZ AR 226 2022 4 0 |
allfieldsGer |
10.1016/j.jpaa.2021.106857 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001579.pica (DE-627)ELV055843433 (ELSEVIER)S0022-4049(21)00198-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.83 bkl Gray, James Richard Andrew verfasserin aut Complete objects in categories 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. secondary Elsevier 20D45 Elsevier Primary Elsevier 20E36 Elsevier Enthalten in North-Holland, Elsevier Science Hill, Jeffrey R. ELSEVIER Humeral position after reverse shoulder arthroplasty as measured by lateralization and distalization angles and association with acromial stress fracture; a case-control study 2021 Amsterdam [u.a.] (DE-627)ELV007557035 volume:226 year:2022 number:4 pages:0 https://doi.org/10.1016/j.jpaa.2021.106857 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.83 Rheumatologie Orthopädie VZ AR 226 2022 4 0 |
allfieldsSound |
10.1016/j.jpaa.2021.106857 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001579.pica (DE-627)ELV055843433 (ELSEVIER)S0022-4049(21)00198-5 DE-627 ger DE-627 rakwb eng 610 VZ 44.83 bkl Gray, James Richard Andrew verfasserin aut Complete objects in categories 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. secondary Elsevier 20D45 Elsevier Primary Elsevier 20E36 Elsevier Enthalten in North-Holland, Elsevier Science Hill, Jeffrey R. ELSEVIER Humeral position after reverse shoulder arthroplasty as measured by lateralization and distalization angles and association with acromial stress fracture; a case-control study 2021 Amsterdam [u.a.] (DE-627)ELV007557035 volume:226 year:2022 number:4 pages:0 https://doi.org/10.1016/j.jpaa.2021.106857 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.83 Rheumatologie Orthopädie VZ AR 226 2022 4 0 |
language |
English |
source |
Enthalten in Humeral position after reverse shoulder arthroplasty as measured by lateralization and distalization angles and association with acromial stress fracture; a case-control study Amsterdam [u.a.] volume:226 year:2022 number:4 pages:0 |
sourceStr |
Enthalten in Humeral position after reverse shoulder arthroplasty as measured by lateralization and distalization angles and association with acromial stress fracture; a case-control study Amsterdam [u.a.] volume:226 year:2022 number:4 pages:0 |
format_phy_str_mv |
Article |
bklname |
Rheumatologie Orthopädie |
institution |
findex.gbv.de |
topic_facet |
secondary 20D45 Primary 20E36 |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Humeral position after reverse shoulder arthroplasty as measured by lateralization and distalization angles and association with acromial stress fracture; a case-control study |
authorswithroles_txt_mv |
Gray, James Richard Andrew @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV007557035 |
dewey-sort |
3610 |
id |
ELV055843433 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055843433</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626042236.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpaa.2021.106857</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001579.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055843433</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-4049(21)00198-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.83</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gray, James Richard Andrew</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complete objects in categories</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">secondary</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">20D45</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Primary</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">20E36</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland, Elsevier Science</subfield><subfield code="a">Hill, Jeffrey R. ELSEVIER</subfield><subfield code="t">Humeral position after reverse shoulder arthroplasty as measured by lateralization and distalization angles and association with acromial stress fracture; a case-control study</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007557035</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:226</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jpaa.2021.106857</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.83</subfield><subfield code="j">Rheumatologie</subfield><subfield code="j">Orthopädie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">226</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Gray, James Richard Andrew |
spellingShingle |
Gray, James Richard Andrew ddc 610 bkl 44.83 Elsevier secondary Elsevier 20D45 Elsevier Primary Elsevier 20E36 Complete objects in categories |
authorStr |
Gray, James Richard Andrew |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV007557035 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.83 bkl Complete objects in categories secondary Elsevier 20D45 Elsevier Primary Elsevier 20E36 Elsevier |
topic |
ddc 610 bkl 44.83 Elsevier secondary Elsevier 20D45 Elsevier Primary Elsevier 20E36 |
topic_unstemmed |
ddc 610 bkl 44.83 Elsevier secondary Elsevier 20D45 Elsevier Primary Elsevier 20E36 |
topic_browse |
ddc 610 bkl 44.83 Elsevier secondary Elsevier 20D45 Elsevier Primary Elsevier 20E36 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
hierarchy_parent_title |
Humeral position after reverse shoulder arthroplasty as measured by lateralization and distalization angles and association with acromial stress fracture; a case-control study |
hierarchy_parent_id |
ELV007557035 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Humeral position after reverse shoulder arthroplasty as measured by lateralization and distalization angles and association with acromial stress fracture; a case-control study |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV007557035 |
title |
Complete objects in categories |
ctrlnum |
(DE-627)ELV055843433 (ELSEVIER)S0022-4049(21)00198-5 |
title_full |
Complete objects in categories |
author_sort |
Gray, James Richard Andrew |
journal |
Humeral position after reverse shoulder arthroplasty as measured by lateralization and distalization angles and association with acromial stress fracture; a case-control study |
journalStr |
Humeral position after reverse shoulder arthroplasty as measured by lateralization and distalization angles and association with acromial stress fracture; a case-control study |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Gray, James Richard Andrew |
container_volume |
226 |
class |
610 VZ 44.83 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Gray, James Richard Andrew |
doi_str_mv |
10.1016/j.jpaa.2021.106857 |
dewey-full |
610 |
title_sort |
complete objects in categories |
title_auth |
Complete objects in categories |
abstract |
We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. |
abstractGer |
We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. |
abstract_unstemmed |
We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
container_issue |
4 |
title_short |
Complete objects in categories |
url |
https://doi.org/10.1016/j.jpaa.2021.106857 |
remote_bool |
true |
ppnlink |
ELV007557035 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jpaa.2021.106857 |
up_date |
2024-07-06T18:41:45.766Z |
_version_ |
1803856176235937792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV055843433</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626042236.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpaa.2021.106857</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001579.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV055843433</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-4049(21)00198-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.83</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gray, James Richard Andrew</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complete objects in categories</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We introduce the notions of proto-complete, complete, complete⁎ and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This together with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explanation behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">secondary</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">20D45</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Primary</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">20E36</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland, Elsevier Science</subfield><subfield code="a">Hill, Jeffrey R. ELSEVIER</subfield><subfield code="t">Humeral position after reverse shoulder arthroplasty as measured by lateralization and distalization angles and association with acromial stress fracture; a case-control study</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007557035</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:226</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jpaa.2021.106857</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.83</subfield><subfield code="j">Rheumatologie</subfield><subfield code="j">Orthopädie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">226</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4022045 |