Layer-wise relevance propagation for backbone identification in discrete fracture networks
In the framework of flow simulations in Discrete Fracture Networks, we consider the problem of identifying possible backbones, namely preferential channels in the network. Backbones can indeed be fruitfully used to analyze clogging or leakage, relevant for example in waste storage problems, or to re...
Ausführliche Beschreibung
Autor*in: |
Berrone, Stefano [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb1−x Ta x )2O6 solid solutions - Ren, Jian ELSEVIER, 2015, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2021 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jocs.2021.101458 |
---|
Katalog-ID: |
ELV05593840X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV05593840X | ||
003 | DE-627 | ||
005 | 20230624224617.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220105s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jocs.2021.101458 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001609.pica |
035 | |a (DE-627)ELV05593840X | ||
035 | |a (ELSEVIER)S1877-7503(21)00135-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
082 | 0 | 4 | |a 570 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a PHARM |q DE-84 |2 fid | ||
084 | |a 44.00 |2 bkl | ||
100 | 1 | |a Berrone, Stefano |e verfasserin |4 aut | |
245 | 1 | 0 | |a Layer-wise relevance propagation for backbone identification in discrete fracture networks |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In the framework of flow simulations in Discrete Fracture Networks, we consider the problem of identifying possible backbones, namely preferential channels in the network. Backbones can indeed be fruitfully used to analyze clogging or leakage, relevant for example in waste storage problems, or to reduce the computational cost of simulations. With a suitably trained Neural Network at hand, we use the Layer-wise Relevance Propagation as a feature selection method to detect the expected relevance of each fracture in a Discrete Fracture Network and thus identifying the backbone. | ||
650 | 7 | |a 65D40 |2 Elsevier | |
650 | 7 | |a 68T37 |2 Elsevier | |
650 | 7 | |a 68T07 |2 Elsevier | |
650 | 7 | |a 76-10 |2 Elsevier | |
650 | 7 | |a 76-11 |2 Elsevier | |
700 | 1 | |a Della Santa, Francesco |4 oth | |
700 | 1 | |a Mastropietro, Antonio |4 oth | |
700 | 1 | |a Pieraccini, Sandra |4 oth | |
700 | 1 | |a Vaccarino, Francesco |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Ren, Jian ELSEVIER |t Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb1−x Ta x )2O6 solid solutions |d 2015 |g Amsterdam [u.a.] |w (DE-627)ELV018619908 |
773 | 1 | 8 | |g volume:55 |g year:2021 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jocs.2021.101458 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a FID-PHARM | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
936 | b | k | |a 44.00 |j Medizin: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 55 |j 2021 |h 0 |
author_variant |
s b sb |
---|---|
matchkey_str |
berronestefanodellasantafrancescomastrop:2021----:aewsrlvnerpgtofrakoedniiainnic |
hierarchy_sort_str |
2021 |
bklnumber |
44.00 |
publishDate |
2021 |
allfields |
10.1016/j.jocs.2021.101458 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001609.pica (DE-627)ELV05593840X (ELSEVIER)S1877-7503(21)00135-6 DE-627 ger DE-627 rakwb eng 540 VZ 570 VZ BIODIV DE-30 fid PHARM DE-84 fid 44.00 bkl Berrone, Stefano verfasserin aut Layer-wise relevance propagation for backbone identification in discrete fracture networks 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In the framework of flow simulations in Discrete Fracture Networks, we consider the problem of identifying possible backbones, namely preferential channels in the network. Backbones can indeed be fruitfully used to analyze clogging or leakage, relevant for example in waste storage problems, or to reduce the computational cost of simulations. With a suitably trained Neural Network at hand, we use the Layer-wise Relevance Propagation as a feature selection method to detect the expected relevance of each fracture in a Discrete Fracture Network and thus identifying the backbone. 65D40 Elsevier 68T37 Elsevier 68T07 Elsevier 76-10 Elsevier 76-11 Elsevier Della Santa, Francesco oth Mastropietro, Antonio oth Pieraccini, Sandra oth Vaccarino, Francesco oth Enthalten in Elsevier Ren, Jian ELSEVIER Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb1−x Ta x )2O6 solid solutions 2015 Amsterdam [u.a.] (DE-627)ELV018619908 volume:55 year:2021 pages:0 https://doi.org/10.1016/j.jocs.2021.101458 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_26 GBV_ILN_40 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2011 44.00 Medizin: Allgemeines VZ AR 55 2021 0 |
spelling |
10.1016/j.jocs.2021.101458 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001609.pica (DE-627)ELV05593840X (ELSEVIER)S1877-7503(21)00135-6 DE-627 ger DE-627 rakwb eng 540 VZ 570 VZ BIODIV DE-30 fid PHARM DE-84 fid 44.00 bkl Berrone, Stefano verfasserin aut Layer-wise relevance propagation for backbone identification in discrete fracture networks 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In the framework of flow simulations in Discrete Fracture Networks, we consider the problem of identifying possible backbones, namely preferential channels in the network. Backbones can indeed be fruitfully used to analyze clogging or leakage, relevant for example in waste storage problems, or to reduce the computational cost of simulations. With a suitably trained Neural Network at hand, we use the Layer-wise Relevance Propagation as a feature selection method to detect the expected relevance of each fracture in a Discrete Fracture Network and thus identifying the backbone. 65D40 Elsevier 68T37 Elsevier 68T07 Elsevier 76-10 Elsevier 76-11 Elsevier Della Santa, Francesco oth Mastropietro, Antonio oth Pieraccini, Sandra oth Vaccarino, Francesco oth Enthalten in Elsevier Ren, Jian ELSEVIER Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb1−x Ta x )2O6 solid solutions 2015 Amsterdam [u.a.] (DE-627)ELV018619908 volume:55 year:2021 pages:0 https://doi.org/10.1016/j.jocs.2021.101458 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_26 GBV_ILN_40 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2011 44.00 Medizin: Allgemeines VZ AR 55 2021 0 |
allfields_unstemmed |
10.1016/j.jocs.2021.101458 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001609.pica (DE-627)ELV05593840X (ELSEVIER)S1877-7503(21)00135-6 DE-627 ger DE-627 rakwb eng 540 VZ 570 VZ BIODIV DE-30 fid PHARM DE-84 fid 44.00 bkl Berrone, Stefano verfasserin aut Layer-wise relevance propagation for backbone identification in discrete fracture networks 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In the framework of flow simulations in Discrete Fracture Networks, we consider the problem of identifying possible backbones, namely preferential channels in the network. Backbones can indeed be fruitfully used to analyze clogging or leakage, relevant for example in waste storage problems, or to reduce the computational cost of simulations. With a suitably trained Neural Network at hand, we use the Layer-wise Relevance Propagation as a feature selection method to detect the expected relevance of each fracture in a Discrete Fracture Network and thus identifying the backbone. 65D40 Elsevier 68T37 Elsevier 68T07 Elsevier 76-10 Elsevier 76-11 Elsevier Della Santa, Francesco oth Mastropietro, Antonio oth Pieraccini, Sandra oth Vaccarino, Francesco oth Enthalten in Elsevier Ren, Jian ELSEVIER Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb1−x Ta x )2O6 solid solutions 2015 Amsterdam [u.a.] (DE-627)ELV018619908 volume:55 year:2021 pages:0 https://doi.org/10.1016/j.jocs.2021.101458 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_26 GBV_ILN_40 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2011 44.00 Medizin: Allgemeines VZ AR 55 2021 0 |
allfieldsGer |
10.1016/j.jocs.2021.101458 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001609.pica (DE-627)ELV05593840X (ELSEVIER)S1877-7503(21)00135-6 DE-627 ger DE-627 rakwb eng 540 VZ 570 VZ BIODIV DE-30 fid PHARM DE-84 fid 44.00 bkl Berrone, Stefano verfasserin aut Layer-wise relevance propagation for backbone identification in discrete fracture networks 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In the framework of flow simulations in Discrete Fracture Networks, we consider the problem of identifying possible backbones, namely preferential channels in the network. Backbones can indeed be fruitfully used to analyze clogging or leakage, relevant for example in waste storage problems, or to reduce the computational cost of simulations. With a suitably trained Neural Network at hand, we use the Layer-wise Relevance Propagation as a feature selection method to detect the expected relevance of each fracture in a Discrete Fracture Network and thus identifying the backbone. 65D40 Elsevier 68T37 Elsevier 68T07 Elsevier 76-10 Elsevier 76-11 Elsevier Della Santa, Francesco oth Mastropietro, Antonio oth Pieraccini, Sandra oth Vaccarino, Francesco oth Enthalten in Elsevier Ren, Jian ELSEVIER Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb1−x Ta x )2O6 solid solutions 2015 Amsterdam [u.a.] (DE-627)ELV018619908 volume:55 year:2021 pages:0 https://doi.org/10.1016/j.jocs.2021.101458 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_26 GBV_ILN_40 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2011 44.00 Medizin: Allgemeines VZ AR 55 2021 0 |
allfieldsSound |
10.1016/j.jocs.2021.101458 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001609.pica (DE-627)ELV05593840X (ELSEVIER)S1877-7503(21)00135-6 DE-627 ger DE-627 rakwb eng 540 VZ 570 VZ BIODIV DE-30 fid PHARM DE-84 fid 44.00 bkl Berrone, Stefano verfasserin aut Layer-wise relevance propagation for backbone identification in discrete fracture networks 2021 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In the framework of flow simulations in Discrete Fracture Networks, we consider the problem of identifying possible backbones, namely preferential channels in the network. Backbones can indeed be fruitfully used to analyze clogging or leakage, relevant for example in waste storage problems, or to reduce the computational cost of simulations. With a suitably trained Neural Network at hand, we use the Layer-wise Relevance Propagation as a feature selection method to detect the expected relevance of each fracture in a Discrete Fracture Network and thus identifying the backbone. 65D40 Elsevier 68T37 Elsevier 68T07 Elsevier 76-10 Elsevier 76-11 Elsevier Della Santa, Francesco oth Mastropietro, Antonio oth Pieraccini, Sandra oth Vaccarino, Francesco oth Enthalten in Elsevier Ren, Jian ELSEVIER Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb1−x Ta x )2O6 solid solutions 2015 Amsterdam [u.a.] (DE-627)ELV018619908 volume:55 year:2021 pages:0 https://doi.org/10.1016/j.jocs.2021.101458 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_26 GBV_ILN_40 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2011 44.00 Medizin: Allgemeines VZ AR 55 2021 0 |
language |
English |
source |
Enthalten in Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb1−x Ta x )2O6 solid solutions Amsterdam [u.a.] volume:55 year:2021 pages:0 |
sourceStr |
Enthalten in Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb1−x Ta x )2O6 solid solutions Amsterdam [u.a.] volume:55 year:2021 pages:0 |
format_phy_str_mv |
Article |
bklname |
Medizin: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
65D40 68T37 68T07 76-10 76-11 |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb1−x Ta x )2O6 solid solutions |
authorswithroles_txt_mv |
Berrone, Stefano @@aut@@ Della Santa, Francesco @@oth@@ Mastropietro, Antonio @@oth@@ Pieraccini, Sandra @@oth@@ Vaccarino, Francesco @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV018619908 |
dewey-sort |
3540 |
id |
ELV05593840X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05593840X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624224617.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jocs.2021.101458</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001609.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05593840X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1877-7503(21)00135-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berrone, Stefano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Layer-wise relevance propagation for backbone identification in discrete fracture networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the framework of flow simulations in Discrete Fracture Networks, we consider the problem of identifying possible backbones, namely preferential channels in the network. Backbones can indeed be fruitfully used to analyze clogging or leakage, relevant for example in waste storage problems, or to reduce the computational cost of simulations. With a suitably trained Neural Network at hand, we use the Layer-wise Relevance Propagation as a feature selection method to detect the expected relevance of each fracture in a Discrete Fracture Network and thus identifying the backbone.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">65D40</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">68T37</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">68T07</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">76-10</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">76-11</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Della Santa, Francesco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mastropietro, Antonio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pieraccini, Sandra</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vaccarino, Francesco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Ren, Jian ELSEVIER</subfield><subfield code="t">Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb1−x Ta x )2O6 solid solutions</subfield><subfield code="d">2015</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV018619908</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jocs.2021.101458</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="j">Medizin: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Berrone, Stefano |
spellingShingle |
Berrone, Stefano ddc 540 ddc 570 fid BIODIV fid PHARM bkl 44.00 Elsevier 65D40 Elsevier 68T37 Elsevier 68T07 Elsevier 76-10 Elsevier 76-11 Layer-wise relevance propagation for backbone identification in discrete fracture networks |
authorStr |
Berrone, Stefano |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV018619908 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 VZ 570 VZ BIODIV DE-30 fid PHARM DE-84 fid 44.00 bkl Layer-wise relevance propagation for backbone identification in discrete fracture networks 65D40 Elsevier 68T37 Elsevier 68T07 Elsevier 76-10 Elsevier 76-11 Elsevier |
topic |
ddc 540 ddc 570 fid BIODIV fid PHARM bkl 44.00 Elsevier 65D40 Elsevier 68T37 Elsevier 68T07 Elsevier 76-10 Elsevier 76-11 |
topic_unstemmed |
ddc 540 ddc 570 fid BIODIV fid PHARM bkl 44.00 Elsevier 65D40 Elsevier 68T37 Elsevier 68T07 Elsevier 76-10 Elsevier 76-11 |
topic_browse |
ddc 540 ddc 570 fid BIODIV fid PHARM bkl 44.00 Elsevier 65D40 Elsevier 68T37 Elsevier 68T07 Elsevier 76-10 Elsevier 76-11 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s f d sf sfd a m am s p sp f v fv |
hierarchy_parent_title |
Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb1−x Ta x )2O6 solid solutions |
hierarchy_parent_id |
ELV018619908 |
dewey-tens |
540 - Chemistry 570 - Life sciences; biology |
hierarchy_top_title |
Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb1−x Ta x )2O6 solid solutions |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV018619908 |
title |
Layer-wise relevance propagation for backbone identification in discrete fracture networks |
ctrlnum |
(DE-627)ELV05593840X (ELSEVIER)S1877-7503(21)00135-6 |
title_full |
Layer-wise relevance propagation for backbone identification in discrete fracture networks |
author_sort |
Berrone, Stefano |
journal |
Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb1−x Ta x )2O6 solid solutions |
journalStr |
Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb1−x Ta x )2O6 solid solutions |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Berrone, Stefano |
container_volume |
55 |
class |
540 VZ 570 VZ BIODIV DE-30 fid PHARM DE-84 fid 44.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Berrone, Stefano |
doi_str_mv |
10.1016/j.jocs.2021.101458 |
dewey-full |
540 570 |
title_sort |
layer-wise relevance propagation for backbone identification in discrete fracture networks |
title_auth |
Layer-wise relevance propagation for backbone identification in discrete fracture networks |
abstract |
In the framework of flow simulations in Discrete Fracture Networks, we consider the problem of identifying possible backbones, namely preferential channels in the network. Backbones can indeed be fruitfully used to analyze clogging or leakage, relevant for example in waste storage problems, or to reduce the computational cost of simulations. With a suitably trained Neural Network at hand, we use the Layer-wise Relevance Propagation as a feature selection method to detect the expected relevance of each fracture in a Discrete Fracture Network and thus identifying the backbone. |
abstractGer |
In the framework of flow simulations in Discrete Fracture Networks, we consider the problem of identifying possible backbones, namely preferential channels in the network. Backbones can indeed be fruitfully used to analyze clogging or leakage, relevant for example in waste storage problems, or to reduce the computational cost of simulations. With a suitably trained Neural Network at hand, we use the Layer-wise Relevance Propagation as a feature selection method to detect the expected relevance of each fracture in a Discrete Fracture Network and thus identifying the backbone. |
abstract_unstemmed |
In the framework of flow simulations in Discrete Fracture Networks, we consider the problem of identifying possible backbones, namely preferential channels in the network. Backbones can indeed be fruitfully used to analyze clogging or leakage, relevant for example in waste storage problems, or to reduce the computational cost of simulations. With a suitably trained Neural Network at hand, we use the Layer-wise Relevance Propagation as a feature selection method to detect the expected relevance of each fracture in a Discrete Fracture Network and thus identifying the backbone. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_26 GBV_ILN_40 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2011 |
title_short |
Layer-wise relevance propagation for backbone identification in discrete fracture networks |
url |
https://doi.org/10.1016/j.jocs.2021.101458 |
remote_bool |
true |
author2 |
Della Santa, Francesco Mastropietro, Antonio Pieraccini, Sandra Vaccarino, Francesco |
author2Str |
Della Santa, Francesco Mastropietro, Antonio Pieraccini, Sandra Vaccarino, Francesco |
ppnlink |
ELV018619908 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.jocs.2021.101458 |
up_date |
2024-07-06T18:57:18.717Z |
_version_ |
1803857154505965568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05593840X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624224617.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jocs.2021.101458</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001609.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05593840X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1877-7503(21)00135-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berrone, Stefano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Layer-wise relevance propagation for backbone identification in discrete fracture networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the framework of flow simulations in Discrete Fracture Networks, we consider the problem of identifying possible backbones, namely preferential channels in the network. Backbones can indeed be fruitfully used to analyze clogging or leakage, relevant for example in waste storage problems, or to reduce the computational cost of simulations. With a suitably trained Neural Network at hand, we use the Layer-wise Relevance Propagation as a feature selection method to detect the expected relevance of each fracture in a Discrete Fracture Network and thus identifying the backbone.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">65D40</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">68T37</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">68T07</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">76-10</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">76-11</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Della Santa, Francesco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mastropietro, Antonio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pieraccini, Sandra</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vaccarino, Francesco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Ren, Jian ELSEVIER</subfield><subfield code="t">Effective mineralization of organic dye under visible-light irradiation over electronic-structure-modulated Sn(Nb1−x Ta x )2O6 solid solutions</subfield><subfield code="d">2015</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV018619908</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jocs.2021.101458</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="j">Medizin: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.400876 |