Quantitative translations for viscosity approximation methods in hyperbolic spaces
In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration fo...
Ausführliche Beschreibung
Autor*in: |
Kohlenbach, Ulrich [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: In silico drug repurposing in COVID-19: A network-based analysis - Sibilio, Pasquale ELSEVIER, 2021, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:507 ; year:2022 ; number:2 ; day:15 ; month:03 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jmaa.2021.125823 |
---|
Katalog-ID: |
ELV056011024 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV056011024 | ||
003 | DE-627 | ||
005 | 20230626042530.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220105s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmaa.2021.125823 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001594.pica |
035 | |a (DE-627)ELV056011024 | ||
035 | |a (ELSEVIER)S0022-247X(21)00902-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Kohlenbach, Ulrich |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantitative translations for viscosity approximation methods in hyperbolic spaces |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions). | ||
520 | |a In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions). | ||
650 | 7 | |a Rates of convergence |2 Elsevier | |
650 | 7 | |a Viscosity method |2 Elsevier | |
650 | 7 | |a Rates of metastability |2 Elsevier | |
650 | 7 | |a Proof mining |2 Elsevier | |
700 | 1 | |a Pinto, Pedro |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Sibilio, Pasquale ELSEVIER |t In silico drug repurposing in COVID-19: A network-based analysis |d 2021 |g Amsterdam [u.a.] |w (DE-627)ELV006634001 |
773 | 1 | 8 | |g volume:507 |g year:2022 |g number:2 |g day:15 |g month:03 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmaa.2021.125823 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
936 | b | k | |a 44.40 |j Pharmazie |j Pharmazeutika |q VZ |
951 | |a AR | ||
952 | |d 507 |j 2022 |e 2 |b 15 |c 0315 |h 0 |
author_variant |
u k uk |
---|---|
matchkey_str |
kohlenbachulrichpintopedro:2022----:uniaiernltosovsoiyprxmtomto |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
44.40 |
publishDate |
2022 |
allfields |
10.1016/j.jmaa.2021.125823 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001594.pica (DE-627)ELV056011024 (ELSEVIER)S0022-247X(21)00902-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Kohlenbach, Ulrich verfasserin aut Quantitative translations for viscosity approximation methods in hyperbolic spaces 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions). In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions). Rates of convergence Elsevier Viscosity method Elsevier Rates of metastability Elsevier Proof mining Elsevier Pinto, Pedro oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:507 year:2022 number:2 day:15 month:03 pages:0 https://doi.org/10.1016/j.jmaa.2021.125823 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 507 2022 2 15 0315 0 |
spelling |
10.1016/j.jmaa.2021.125823 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001594.pica (DE-627)ELV056011024 (ELSEVIER)S0022-247X(21)00902-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Kohlenbach, Ulrich verfasserin aut Quantitative translations for viscosity approximation methods in hyperbolic spaces 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions). In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions). Rates of convergence Elsevier Viscosity method Elsevier Rates of metastability Elsevier Proof mining Elsevier Pinto, Pedro oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:507 year:2022 number:2 day:15 month:03 pages:0 https://doi.org/10.1016/j.jmaa.2021.125823 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 507 2022 2 15 0315 0 |
allfields_unstemmed |
10.1016/j.jmaa.2021.125823 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001594.pica (DE-627)ELV056011024 (ELSEVIER)S0022-247X(21)00902-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Kohlenbach, Ulrich verfasserin aut Quantitative translations for viscosity approximation methods in hyperbolic spaces 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions). In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions). Rates of convergence Elsevier Viscosity method Elsevier Rates of metastability Elsevier Proof mining Elsevier Pinto, Pedro oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:507 year:2022 number:2 day:15 month:03 pages:0 https://doi.org/10.1016/j.jmaa.2021.125823 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 507 2022 2 15 0315 0 |
allfieldsGer |
10.1016/j.jmaa.2021.125823 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001594.pica (DE-627)ELV056011024 (ELSEVIER)S0022-247X(21)00902-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Kohlenbach, Ulrich verfasserin aut Quantitative translations for viscosity approximation methods in hyperbolic spaces 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions). In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions). Rates of convergence Elsevier Viscosity method Elsevier Rates of metastability Elsevier Proof mining Elsevier Pinto, Pedro oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:507 year:2022 number:2 day:15 month:03 pages:0 https://doi.org/10.1016/j.jmaa.2021.125823 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 507 2022 2 15 0315 0 |
allfieldsSound |
10.1016/j.jmaa.2021.125823 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001594.pica (DE-627)ELV056011024 (ELSEVIER)S0022-247X(21)00902-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Kohlenbach, Ulrich verfasserin aut Quantitative translations for viscosity approximation methods in hyperbolic spaces 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions). In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions). Rates of convergence Elsevier Viscosity method Elsevier Rates of metastability Elsevier Proof mining Elsevier Pinto, Pedro oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:507 year:2022 number:2 day:15 month:03 pages:0 https://doi.org/10.1016/j.jmaa.2021.125823 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 507 2022 2 15 0315 0 |
language |
English |
source |
Enthalten in In silico drug repurposing in COVID-19: A network-based analysis Amsterdam [u.a.] volume:507 year:2022 number:2 day:15 month:03 pages:0 |
sourceStr |
Enthalten in In silico drug repurposing in COVID-19: A network-based analysis Amsterdam [u.a.] volume:507 year:2022 number:2 day:15 month:03 pages:0 |
format_phy_str_mv |
Article |
bklname |
Pharmazie Pharmazeutika |
institution |
findex.gbv.de |
topic_facet |
Rates of convergence Viscosity method Rates of metastability Proof mining |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
In silico drug repurposing in COVID-19: A network-based analysis |
authorswithroles_txt_mv |
Kohlenbach, Ulrich @@aut@@ Pinto, Pedro @@oth@@ |
publishDateDaySort_date |
2022-01-15T00:00:00Z |
hierarchy_top_id |
ELV006634001 |
dewey-sort |
3610 |
id |
ELV056011024 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056011024</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626042530.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmaa.2021.125823</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001594.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056011024</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-247X(21)00902-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kohlenbach, Ulrich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantitative translations for viscosity approximation methods in hyperbolic spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rates of convergence</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Viscosity method</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rates of metastability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Proof mining</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pinto, Pedro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sibilio, Pasquale ELSEVIER</subfield><subfield code="t">In silico drug repurposing in COVID-19: A network-based analysis</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006634001</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:507</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmaa.2021.125823</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">507</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">0315</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Kohlenbach, Ulrich |
spellingShingle |
Kohlenbach, Ulrich ddc 610 bkl 44.40 Elsevier Rates of convergence Elsevier Viscosity method Elsevier Rates of metastability Elsevier Proof mining Quantitative translations for viscosity approximation methods in hyperbolic spaces |
authorStr |
Kohlenbach, Ulrich |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006634001 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.40 bkl Quantitative translations for viscosity approximation methods in hyperbolic spaces Rates of convergence Elsevier Viscosity method Elsevier Rates of metastability Elsevier Proof mining Elsevier |
topic |
ddc 610 bkl 44.40 Elsevier Rates of convergence Elsevier Viscosity method Elsevier Rates of metastability Elsevier Proof mining |
topic_unstemmed |
ddc 610 bkl 44.40 Elsevier Rates of convergence Elsevier Viscosity method Elsevier Rates of metastability Elsevier Proof mining |
topic_browse |
ddc 610 bkl 44.40 Elsevier Rates of convergence Elsevier Viscosity method Elsevier Rates of metastability Elsevier Proof mining |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
p p pp |
hierarchy_parent_title |
In silico drug repurposing in COVID-19: A network-based analysis |
hierarchy_parent_id |
ELV006634001 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
In silico drug repurposing in COVID-19: A network-based analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006634001 |
title |
Quantitative translations for viscosity approximation methods in hyperbolic spaces |
ctrlnum |
(DE-627)ELV056011024 (ELSEVIER)S0022-247X(21)00902-1 |
title_full |
Quantitative translations for viscosity approximation methods in hyperbolic spaces |
author_sort |
Kohlenbach, Ulrich |
journal |
In silico drug repurposing in COVID-19: A network-based analysis |
journalStr |
In silico drug repurposing in COVID-19: A network-based analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Kohlenbach, Ulrich |
container_volume |
507 |
class |
610 VZ 44.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kohlenbach, Ulrich |
doi_str_mv |
10.1016/j.jmaa.2021.125823 |
dewey-full |
610 |
title_sort |
quantitative translations for viscosity approximation methods in hyperbolic spaces |
title_auth |
Quantitative translations for viscosity approximation methods in hyperbolic spaces |
abstract |
In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions). |
abstractGer |
In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions). |
abstract_unstemmed |
In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions). |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA |
container_issue |
2 |
title_short |
Quantitative translations for viscosity approximation methods in hyperbolic spaces |
url |
https://doi.org/10.1016/j.jmaa.2021.125823 |
remote_bool |
true |
author2 |
Pinto, Pedro |
author2Str |
Pinto, Pedro |
ppnlink |
ELV006634001 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.jmaa.2021.125823 |
up_date |
2024-07-06T19:10:13.282Z |
_version_ |
1803857966696235008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056011024</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626042530.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmaa.2021.125823</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001594.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056011024</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-247X(21)00902-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kohlenbach, Ulrich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantitative translations for viscosity approximation methods in hyperbolic spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the setting of hyperbolic spaces, we show that the convergence of Browder-type sequences and Halpern iterations respectively entail the convergence of their viscosity version with a Rakotch map. We also show that the convergence of a hybrid viscosity version of the Krasnoselskii-Mann iteration follows from the convergence of the Browder type sequence. Our results follow from proof-theoretic techniques (proof mining). From an analysis of theorems due to T. Suzuki, we extract a transformation of rates for the original Browder type and Halpern iterations into rates for the corresponding viscosity versions. We show that these transformations can be applied to earlier quantitative studies of these iterations. From an analysis of a theorem due to H.-K. Xu, N. Altwaijry and S. Chebbi, we obtain similar results. Finally, in uniformly convex Banach spaces we study a strong notion of accretive operator due to Brezis and Sibony and extract an uniform modulus of uniqueness for the property of being a zero point. In this context, we show that it is possible to obtain Cauchy rates for the Browder type and the Halpern iterations (and hence also for their viscosity versions).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rates of convergence</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Viscosity method</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rates of metastability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Proof mining</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pinto, Pedro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sibilio, Pasquale ELSEVIER</subfield><subfield code="t">In silico drug repurposing in COVID-19: A network-based analysis</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006634001</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:507</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmaa.2021.125823</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">507</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">0315</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.399147 |