A weighted-sum method for solving the bi-objective traveling thief problem
Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a c...
Ausführliche Beschreibung
Autor*in: |
Chagas, Jonatas B.C. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Influence of CeO - Aboutaleb, Wael A. ELSEVIER, 2021, an international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:138 ; year:2022 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.cor.2021.105560 |
---|
Katalog-ID: |
ELV056045077 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV056045077 | ||
003 | DE-627 | ||
005 | 20230626042626.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220105s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cor.2021.105560 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001604.pica |
035 | |a (DE-627)ELV056045077 | ||
035 | |a (ELSEVIER)S0305-0548(21)00292-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |a 530 |q VZ |
084 | |a ASIEN |q DE-1a |2 fid | ||
084 | |a 6,25 |2 ssgn | ||
084 | |a 35.90 |2 bkl | ||
084 | |a 33.61 |2 bkl | ||
084 | |a 51.00 |2 bkl | ||
100 | 1 | |a Chagas, Jonatas B.C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A weighted-sum method for solving the bi-objective traveling thief problem |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances. | ||
520 | |a Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances. | ||
650 | 7 | |a Multi-component problems |2 Elsevier | |
650 | 7 | |a Bi-objective formulations |2 Elsevier | |
650 | 7 | |a Traveling salesperson problem |2 Elsevier | |
650 | 7 | |a Knapsack problem |2 Elsevier | |
700 | 1 | |a Wagner, Markus |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Aboutaleb, Wael A. ELSEVIER |t Influence of CeO |d 2021 |d an international journal |g Amsterdam [u.a.] |w (DE-627)ELV00698584X |
773 | 1 | 8 | |g volume:138 |g year:2022 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.cor.2021.105560 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-ASIEN | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 35.90 |j Festkörperchemie |q VZ |
936 | b | k | |a 33.61 |j Festkörperphysik |q VZ |
936 | b | k | |a 51.00 |j Werkstoffkunde: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 138 |j 2022 |h 0 |
author_variant |
j b c jb jbc |
---|---|
matchkey_str |
chagasjonatasbcwagnermarkus:2022----:wihesmehdoslighbojcier |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
35.90 33.61 51.00 |
publishDate |
2022 |
allfields |
10.1016/j.cor.2021.105560 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001604.pica (DE-627)ELV056045077 (ELSEVIER)S0305-0548(21)00292-6 DE-627 ger DE-627 rakwb eng 540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl Chagas, Jonatas B.C. verfasserin aut A weighted-sum method for solving the bi-objective traveling thief problem 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances. Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances. Multi-component problems Elsevier Bi-objective formulations Elsevier Traveling salesperson problem Elsevier Knapsack problem Elsevier Wagner, Markus oth Enthalten in Elsevier Aboutaleb, Wael A. ELSEVIER Influence of CeO 2021 an international journal Amsterdam [u.a.] (DE-627)ELV00698584X volume:138 year:2022 pages:0 https://doi.org/10.1016/j.cor.2021.105560 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA 35.90 Festkörperchemie VZ 33.61 Festkörperphysik VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 138 2022 0 |
spelling |
10.1016/j.cor.2021.105560 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001604.pica (DE-627)ELV056045077 (ELSEVIER)S0305-0548(21)00292-6 DE-627 ger DE-627 rakwb eng 540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl Chagas, Jonatas B.C. verfasserin aut A weighted-sum method for solving the bi-objective traveling thief problem 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances. Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances. Multi-component problems Elsevier Bi-objective formulations Elsevier Traveling salesperson problem Elsevier Knapsack problem Elsevier Wagner, Markus oth Enthalten in Elsevier Aboutaleb, Wael A. ELSEVIER Influence of CeO 2021 an international journal Amsterdam [u.a.] (DE-627)ELV00698584X volume:138 year:2022 pages:0 https://doi.org/10.1016/j.cor.2021.105560 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA 35.90 Festkörperchemie VZ 33.61 Festkörperphysik VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 138 2022 0 |
allfields_unstemmed |
10.1016/j.cor.2021.105560 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001604.pica (DE-627)ELV056045077 (ELSEVIER)S0305-0548(21)00292-6 DE-627 ger DE-627 rakwb eng 540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl Chagas, Jonatas B.C. verfasserin aut A weighted-sum method for solving the bi-objective traveling thief problem 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances. Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances. Multi-component problems Elsevier Bi-objective formulations Elsevier Traveling salesperson problem Elsevier Knapsack problem Elsevier Wagner, Markus oth Enthalten in Elsevier Aboutaleb, Wael A. ELSEVIER Influence of CeO 2021 an international journal Amsterdam [u.a.] (DE-627)ELV00698584X volume:138 year:2022 pages:0 https://doi.org/10.1016/j.cor.2021.105560 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA 35.90 Festkörperchemie VZ 33.61 Festkörperphysik VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 138 2022 0 |
allfieldsGer |
10.1016/j.cor.2021.105560 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001604.pica (DE-627)ELV056045077 (ELSEVIER)S0305-0548(21)00292-6 DE-627 ger DE-627 rakwb eng 540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl Chagas, Jonatas B.C. verfasserin aut A weighted-sum method for solving the bi-objective traveling thief problem 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances. Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances. Multi-component problems Elsevier Bi-objective formulations Elsevier Traveling salesperson problem Elsevier Knapsack problem Elsevier Wagner, Markus oth Enthalten in Elsevier Aboutaleb, Wael A. ELSEVIER Influence of CeO 2021 an international journal Amsterdam [u.a.] (DE-627)ELV00698584X volume:138 year:2022 pages:0 https://doi.org/10.1016/j.cor.2021.105560 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA 35.90 Festkörperchemie VZ 33.61 Festkörperphysik VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 138 2022 0 |
allfieldsSound |
10.1016/j.cor.2021.105560 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001604.pica (DE-627)ELV056045077 (ELSEVIER)S0305-0548(21)00292-6 DE-627 ger DE-627 rakwb eng 540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl Chagas, Jonatas B.C. verfasserin aut A weighted-sum method for solving the bi-objective traveling thief problem 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances. Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances. Multi-component problems Elsevier Bi-objective formulations Elsevier Traveling salesperson problem Elsevier Knapsack problem Elsevier Wagner, Markus oth Enthalten in Elsevier Aboutaleb, Wael A. ELSEVIER Influence of CeO 2021 an international journal Amsterdam [u.a.] (DE-627)ELV00698584X volume:138 year:2022 pages:0 https://doi.org/10.1016/j.cor.2021.105560 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA 35.90 Festkörperchemie VZ 33.61 Festkörperphysik VZ 51.00 Werkstoffkunde: Allgemeines VZ AR 138 2022 0 |
language |
English |
source |
Enthalten in Influence of CeO Amsterdam [u.a.] volume:138 year:2022 pages:0 |
sourceStr |
Enthalten in Influence of CeO Amsterdam [u.a.] volume:138 year:2022 pages:0 |
format_phy_str_mv |
Article |
bklname |
Festkörperchemie Festkörperphysik Werkstoffkunde: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Multi-component problems Bi-objective formulations Traveling salesperson problem Knapsack problem |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Influence of CeO |
authorswithroles_txt_mv |
Chagas, Jonatas B.C. @@aut@@ Wagner, Markus @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV00698584X |
dewey-sort |
3540 |
id |
ELV056045077 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056045077</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626042626.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cor.2021.105560</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001604.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056045077</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0305-0548(21)00292-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ASIEN</subfield><subfield code="q">DE-1a</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">6,25</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chagas, Jonatas B.C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A weighted-sum method for solving the bi-objective traveling thief problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multi-component problems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bi-objective formulations</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Traveling salesperson problem</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Knapsack problem</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wagner, Markus</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Aboutaleb, Wael A. ELSEVIER</subfield><subfield code="t">Influence of CeO</subfield><subfield code="d">2021</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00698584X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:138</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cor.2021.105560</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-ASIEN</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">138</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Chagas, Jonatas B.C. |
spellingShingle |
Chagas, Jonatas B.C. ddc 540 fid ASIEN ssgn 6,25 bkl 35.90 bkl 33.61 bkl 51.00 Elsevier Multi-component problems Elsevier Bi-objective formulations Elsevier Traveling salesperson problem Elsevier Knapsack problem A weighted-sum method for solving the bi-objective traveling thief problem |
authorStr |
Chagas, Jonatas B.C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00698584X |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl A weighted-sum method for solving the bi-objective traveling thief problem Multi-component problems Elsevier Bi-objective formulations Elsevier Traveling salesperson problem Elsevier Knapsack problem Elsevier |
topic |
ddc 540 fid ASIEN ssgn 6,25 bkl 35.90 bkl 33.61 bkl 51.00 Elsevier Multi-component problems Elsevier Bi-objective formulations Elsevier Traveling salesperson problem Elsevier Knapsack problem |
topic_unstemmed |
ddc 540 fid ASIEN ssgn 6,25 bkl 35.90 bkl 33.61 bkl 51.00 Elsevier Multi-component problems Elsevier Bi-objective formulations Elsevier Traveling salesperson problem Elsevier Knapsack problem |
topic_browse |
ddc 540 fid ASIEN ssgn 6,25 bkl 35.90 bkl 33.61 bkl 51.00 Elsevier Multi-component problems Elsevier Bi-objective formulations Elsevier Traveling salesperson problem Elsevier Knapsack problem |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m w mw |
hierarchy_parent_title |
Influence of CeO |
hierarchy_parent_id |
ELV00698584X |
dewey-tens |
540 - Chemistry 530 - Physics |
hierarchy_top_title |
Influence of CeO |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00698584X |
title |
A weighted-sum method for solving the bi-objective traveling thief problem |
ctrlnum |
(DE-627)ELV056045077 (ELSEVIER)S0305-0548(21)00292-6 |
title_full |
A weighted-sum method for solving the bi-objective traveling thief problem |
author_sort |
Chagas, Jonatas B.C. |
journal |
Influence of CeO |
journalStr |
Influence of CeO |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Chagas, Jonatas B.C. |
container_volume |
138 |
class |
540 530 VZ ASIEN DE-1a fid 6,25 ssgn 35.90 bkl 33.61 bkl 51.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chagas, Jonatas B.C. |
doi_str_mv |
10.1016/j.cor.2021.105560 |
dewey-full |
540 530 |
title_sort |
a weighted-sum method for solving the bi-objective traveling thief problem |
title_auth |
A weighted-sum method for solving the bi-objective traveling thief problem |
abstract |
Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances. |
abstractGer |
Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances. |
abstract_unstemmed |
Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-ASIEN SSG-OLC-PHA |
title_short |
A weighted-sum method for solving the bi-objective traveling thief problem |
url |
https://doi.org/10.1016/j.cor.2021.105560 |
remote_bool |
true |
author2 |
Wagner, Markus |
author2Str |
Wagner, Markus |
ppnlink |
ELV00698584X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.cor.2021.105560 |
up_date |
2024-07-06T19:16:31.714Z |
_version_ |
1803858363510947840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056045077</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626042626.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cor.2021.105560</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001604.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056045077</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0305-0548(21)00292-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ASIEN</subfield><subfield code="q">DE-1a</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">6,25</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chagas, Jonatas B.C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A weighted-sum method for solving the bi-objective traveling thief problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many real-world optimization problems have multiple interacting components. Each of these can be an NP -hard problem, and they can be in conflict with each other, i.e., the optimal solution for one component does not necessarily represent an optimal solution for the other components. This can be a challenge for single-objective formulations, where the respective influence that each component has on the overall solution quality can vary from instance to instance. In this paper, we study a bi-objective formulation of the traveling thief problem, which has as components the traveling salesperson problem and the knapsack problem. We present a weighted-sum method that makes use of randomized versions of existing heuristics, that outperforms participants on 6 of 9 instances of recent competitions, and that has found new best solutions to 379 single-objective problem instances.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multi-component problems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bi-objective formulations</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Traveling salesperson problem</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Knapsack problem</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wagner, Markus</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Aboutaleb, Wael A. ELSEVIER</subfield><subfield code="t">Influence of CeO</subfield><subfield code="d">2021</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00698584X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:138</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cor.2021.105560</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-ASIEN</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.90</subfield><subfield code="j">Festkörperchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">138</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.3985224 |