Structural characterization and regulation of the mechanical properties of the carapace cuticle in tri-spine horseshoe crab (Tachypleus tridentatus)
Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to un...
Ausführliche Beschreibung
Autor*in: |
Ma, Yaopeng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules - Liu, Min-Jie ELSEVIER, 2016, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:125 ; year:2022 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jmbbm.2021.104954 |
---|
Katalog-ID: |
ELV056142536 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV056142536 | ||
003 | DE-627 | ||
005 | 20230626042813.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220105s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmbbm.2021.104954 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001761.pica |
035 | |a (DE-627)ELV056142536 | ||
035 | |a (ELSEVIER)S1751-6161(21)00585-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 52.43 |2 bkl | ||
084 | |a 52.52 |2 bkl | ||
084 | |a 52.42 |2 bkl | ||
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Ma, Yaopeng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Structural characterization and regulation of the mechanical properties of the carapace cuticle in tri-spine horseshoe crab (Tachypleus tridentatus) |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites. | ||
520 | |a Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites. | ||
650 | 7 | |a Tri-spine horseshoe crab |2 Elsevier | |
650 | 7 | |a Mechanical properties |2 Elsevier | |
650 | 7 | |a Arthropod cuticle |2 Elsevier | |
650 | 7 | |a Regulation mechanism |2 Elsevier | |
650 | 7 | |a Biological materials |2 Elsevier | |
700 | 1 | |a Guo, Ce |4 oth | |
700 | 1 | |a Dai, Ning |4 oth | |
700 | 1 | |a Shen, Jingyu |4 oth | |
700 | 1 | |a Guan, Jigang |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Liu, Min-Jie ELSEVIER |t A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |d 2016 |g Amsterdam [u.a.] |w (DE-627)ELV009727671 |
773 | 1 | 8 | |g volume:125 |g year:2022 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmbbm.2021.104954 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 52.43 |j Kältetechnik |q VZ |
936 | b | k | |a 52.52 |j Thermische Energieerzeugung |j Wärmetechnik |q VZ |
936 | b | k | |a 52.42 |j Heizungstechnik |j Lüftungstechnik |j Klimatechnik |q VZ |
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 125 |j 2022 |h 0 |
author_variant |
y m ym |
---|---|
matchkey_str |
mayaopengguocedainingshenjingyuguanjigan:2022----:tutrlhrceiainnrgltooteehnclrprisfhcrpcctcenrsieo |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
52.43 52.52 52.42 50.38 |
publishDate |
2022 |
allfields |
10.1016/j.jmbbm.2021.104954 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001761.pica (DE-627)ELV056142536 (ELSEVIER)S1751-6161(21)00585-3 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Ma, Yaopeng verfasserin aut Structural characterization and regulation of the mechanical properties of the carapace cuticle in tri-spine horseshoe crab (Tachypleus tridentatus) 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites. Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites. Tri-spine horseshoe crab Elsevier Mechanical properties Elsevier Arthropod cuticle Elsevier Regulation mechanism Elsevier Biological materials Elsevier Guo, Ce oth Dai, Ning oth Shen, Jingyu oth Guan, Jigang oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:125 year:2022 pages:0 https://doi.org/10.1016/j.jmbbm.2021.104954 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 125 2022 0 |
spelling |
10.1016/j.jmbbm.2021.104954 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001761.pica (DE-627)ELV056142536 (ELSEVIER)S1751-6161(21)00585-3 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Ma, Yaopeng verfasserin aut Structural characterization and regulation of the mechanical properties of the carapace cuticle in tri-spine horseshoe crab (Tachypleus tridentatus) 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites. Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites. Tri-spine horseshoe crab Elsevier Mechanical properties Elsevier Arthropod cuticle Elsevier Regulation mechanism Elsevier Biological materials Elsevier Guo, Ce oth Dai, Ning oth Shen, Jingyu oth Guan, Jigang oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:125 year:2022 pages:0 https://doi.org/10.1016/j.jmbbm.2021.104954 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 125 2022 0 |
allfields_unstemmed |
10.1016/j.jmbbm.2021.104954 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001761.pica (DE-627)ELV056142536 (ELSEVIER)S1751-6161(21)00585-3 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Ma, Yaopeng verfasserin aut Structural characterization and regulation of the mechanical properties of the carapace cuticle in tri-spine horseshoe crab (Tachypleus tridentatus) 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites. Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites. Tri-spine horseshoe crab Elsevier Mechanical properties Elsevier Arthropod cuticle Elsevier Regulation mechanism Elsevier Biological materials Elsevier Guo, Ce oth Dai, Ning oth Shen, Jingyu oth Guan, Jigang oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:125 year:2022 pages:0 https://doi.org/10.1016/j.jmbbm.2021.104954 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 125 2022 0 |
allfieldsGer |
10.1016/j.jmbbm.2021.104954 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001761.pica (DE-627)ELV056142536 (ELSEVIER)S1751-6161(21)00585-3 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Ma, Yaopeng verfasserin aut Structural characterization and regulation of the mechanical properties of the carapace cuticle in tri-spine horseshoe crab (Tachypleus tridentatus) 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites. Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites. Tri-spine horseshoe crab Elsevier Mechanical properties Elsevier Arthropod cuticle Elsevier Regulation mechanism Elsevier Biological materials Elsevier Guo, Ce oth Dai, Ning oth Shen, Jingyu oth Guan, Jigang oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:125 year:2022 pages:0 https://doi.org/10.1016/j.jmbbm.2021.104954 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 125 2022 0 |
allfieldsSound |
10.1016/j.jmbbm.2021.104954 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001761.pica (DE-627)ELV056142536 (ELSEVIER)S1751-6161(21)00585-3 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Ma, Yaopeng verfasserin aut Structural characterization and regulation of the mechanical properties of the carapace cuticle in tri-spine horseshoe crab (Tachypleus tridentatus) 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites. Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites. Tri-spine horseshoe crab Elsevier Mechanical properties Elsevier Arthropod cuticle Elsevier Regulation mechanism Elsevier Biological materials Elsevier Guo, Ce oth Dai, Ning oth Shen, Jingyu oth Guan, Jigang oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:125 year:2022 pages:0 https://doi.org/10.1016/j.jmbbm.2021.104954 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 125 2022 0 |
language |
English |
source |
Enthalten in A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules Amsterdam [u.a.] volume:125 year:2022 pages:0 |
sourceStr |
Enthalten in A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules Amsterdam [u.a.] volume:125 year:2022 pages:0 |
format_phy_str_mv |
Article |
bklname |
Kältetechnik Thermische Energieerzeugung Wärmetechnik Heizungstechnik Lüftungstechnik Klimatechnik Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Tri-spine horseshoe crab Mechanical properties Arthropod cuticle Regulation mechanism Biological materials |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
authorswithroles_txt_mv |
Ma, Yaopeng @@aut@@ Guo, Ce @@oth@@ Dai, Ning @@oth@@ Shen, Jingyu @@oth@@ Guan, Jigang @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV009727671 |
dewey-sort |
3690 |
id |
ELV056142536 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056142536</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626042813.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmbbm.2021.104954</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001761.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056142536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1751-6161(21)00585-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Yaopeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structural characterization and regulation of the mechanical properties of the carapace cuticle in tri-spine horseshoe crab (Tachypleus tridentatus)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tri-spine horseshoe crab</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mechanical properties</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Arthropod cuticle</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Regulation mechanism</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biological materials</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Ce</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Ning</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Jingyu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guan, Jigang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Liu, Min-Jie ELSEVIER</subfield><subfield code="t">A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules</subfield><subfield code="d">2016</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009727671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:125</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmbbm.2021.104954</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">125</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Ma, Yaopeng |
spellingShingle |
Ma, Yaopeng ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier Tri-spine horseshoe crab Elsevier Mechanical properties Elsevier Arthropod cuticle Elsevier Regulation mechanism Elsevier Biological materials Structural characterization and regulation of the mechanical properties of the carapace cuticle in tri-spine horseshoe crab (Tachypleus tridentatus) |
authorStr |
Ma, Yaopeng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV009727671 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Structural characterization and regulation of the mechanical properties of the carapace cuticle in tri-spine horseshoe crab (Tachypleus tridentatus) Tri-spine horseshoe crab Elsevier Mechanical properties Elsevier Arthropod cuticle Elsevier Regulation mechanism Elsevier Biological materials Elsevier |
topic |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier Tri-spine horseshoe crab Elsevier Mechanical properties Elsevier Arthropod cuticle Elsevier Regulation mechanism Elsevier Biological materials |
topic_unstemmed |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier Tri-spine horseshoe crab Elsevier Mechanical properties Elsevier Arthropod cuticle Elsevier Regulation mechanism Elsevier Biological materials |
topic_browse |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier Tri-spine horseshoe crab Elsevier Mechanical properties Elsevier Arthropod cuticle Elsevier Regulation mechanism Elsevier Biological materials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
c g cg n d nd j s js j g jg |
hierarchy_parent_title |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
hierarchy_parent_id |
ELV009727671 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV009727671 |
title |
Structural characterization and regulation of the mechanical properties of the carapace cuticle in tri-spine horseshoe crab (Tachypleus tridentatus) |
ctrlnum |
(DE-627)ELV056142536 (ELSEVIER)S1751-6161(21)00585-3 |
title_full |
Structural characterization and regulation of the mechanical properties of the carapace cuticle in tri-spine horseshoe crab (Tachypleus tridentatus) |
author_sort |
Ma, Yaopeng |
journal |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
journalStr |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Ma, Yaopeng |
container_volume |
125 |
class |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ma, Yaopeng |
doi_str_mv |
10.1016/j.jmbbm.2021.104954 |
dewey-full |
690 |
title_sort |
structural characterization and regulation of the mechanical properties of the carapace cuticle in tri-spine horseshoe crab (tachypleus tridentatus) |
title_auth |
Structural characterization and regulation of the mechanical properties of the carapace cuticle in tri-spine horseshoe crab (Tachypleus tridentatus) |
abstract |
Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites. |
abstractGer |
Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites. |
abstract_unstemmed |
Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Structural characterization and regulation of the mechanical properties of the carapace cuticle in tri-spine horseshoe crab (Tachypleus tridentatus) |
url |
https://doi.org/10.1016/j.jmbbm.2021.104954 |
remote_bool |
true |
author2 |
Guo, Ce Dai, Ning Shen, Jingyu Guan, Jigang |
author2Str |
Guo, Ce Dai, Ning Shen, Jingyu Guan, Jigang |
ppnlink |
ELV009727671 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.jmbbm.2021.104954 |
up_date |
2024-07-06T19:33:04.845Z |
_version_ |
1803859404884279296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056142536</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626042813.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmbbm.2021.104954</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001761.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056142536</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1751-6161(21)00585-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Yaopeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structural characterization and regulation of the mechanical properties of the carapace cuticle in tri-spine horseshoe crab (Tachypleus tridentatus)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Horseshoe crab (order Xiphosura) has a large and thick carapace that has evolved as a protective tool to defend against predators and resist impacts from surf-zone turbulence. The naturally occurring spatial variation in the mechanical properties of the carapace cuticle need to be investigated to understand their regulatory mechanism and the underlying design strategies. In this work, we used a combination of high-resolution optical microscopy, scanning electron microscopy, (SEM) and energy-dispersive X-ray spectroscopy (EDS) to evaluate the multiscale microstructure and elemental composition of the cuticle of tri-spine horseshoe crab (Tachypleus tridentatus). The moduli, ultimate strengths, and failure strains of the three individual layers and the entire cuticle were systematically characterized in both the dry and hydrated states. The failure behaviors and energy absorption of the cuticle involved stress stiffening, toughness mechanism and environmental adaptation were analyzed qualitatively and quantitatively and then correlated with the morphological features in different cuticle regions. The mechanical properties are primarily influenced by the endocuticle thickness ratio; a higher thickness ratio corresponds to more stacking of the vertical lamellae, leading to a lower modulus, weaker strength, and greater elongation of the endocuticle. Radial energy is absorbed primarily by the endocuticle, with the energy absorbed in the radial direction being nearly twice that absorbed in the circumferential direction. This is attributed to the larger failure strain and relatively small decrease in the stress plateau in the radial direction. The findings provide a deeper understanding of how nature modulates the cuticle's mechanical properties and inspiration for developing high-performance synthetic composites.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tri-spine horseshoe crab</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mechanical properties</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Arthropod cuticle</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Regulation mechanism</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biological materials</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Ce</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Ning</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Jingyu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guan, Jigang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Liu, Min-Jie ELSEVIER</subfield><subfield code="t">A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules</subfield><subfield code="d">2016</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009727671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:125</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmbbm.2021.104954</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">125</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401045 |