Qualitative barometry of high P/T rocks with field based NIR spectroscopy of white mica
White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoc...
Ausführliche Beschreibung
Autor*in: |
Bradley, Taran W. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Übergeordnetes Werk: |
Enthalten in: Mechanism for anisotropic ejection of atoms from fcc (100) metal surface by low-energy argon ion bombardment: Molecular dynamics simulation - Zhu, Guo ELSEVIER, 2021, an international journal of mineralogy, petrology, and geochemistry, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:408 ; year:2022 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.lithos.2021.106533 |
---|
Katalog-ID: |
ELV056327579 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV056327579 | ||
003 | DE-627 | ||
005 | 20230626043115.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220105s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.lithos.2021.106533 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001626.pica |
035 | |a (DE-627)ELV056327579 | ||
035 | |a (ELSEVIER)S0024-4937(21)00576-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 58.19 |2 bkl | ||
084 | |a 33.09 |2 bkl | ||
084 | |a 52.78 |2 bkl | ||
100 | 1 | |a Bradley, Taran W. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Qualitative barometry of high P/T rocks with field based NIR spectroscopy of white mica |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima... | ||
520 | |a White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima... | ||
700 | 1 | |a Ustunisik, Gokce K. |4 oth | |
700 | 1 | |a Duke, Edward F. |4 oth | |
700 | 1 | |a Ünlüer, Ali T. |4 oth | |
700 | 1 | |a Yıldırım, Demet K. |4 oth | |
700 | 1 | |a Flores, Kennet E. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Zhu, Guo ELSEVIER |t Mechanism for anisotropic ejection of atoms from fcc (100) metal surface by low-energy argon ion bombardment: Molecular dynamics simulation |d 2021 |d an international journal of mineralogy, petrology, and geochemistry |g Amsterdam [u.a.] |w (DE-627)ELV006642446 |
773 | 1 | 8 | |g volume:408 |g year:2022 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.lithos.2021.106533 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 58.19 |j Verfahrenstechnik: Sonstiges |q VZ |
936 | b | k | |a 33.09 |j Physik unter besonderen Bedingungen |q VZ |
936 | b | k | |a 52.78 |j Oberflächentechnik |j Wärmebehandlung |q VZ |
951 | |a AR | ||
952 | |d 408 |j 2022 |h 0 |
author_variant |
t w b tw twb |
---|---|
matchkey_str |
bradleytaranwustunisikgokcekdukeedwardfn:2022----:ulttvbrmtyfihtokwtfedaenrpc |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
58.19 33.09 52.78 |
publishDate |
2022 |
allfields |
10.1016/j.lithos.2021.106533 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001626.pica (DE-627)ELV056327579 (ELSEVIER)S0024-4937(21)00576-4 DE-627 ger DE-627 rakwb eng 530 VZ 58.19 bkl 33.09 bkl 52.78 bkl Bradley, Taran W. verfasserin aut Qualitative barometry of high P/T rocks with field based NIR spectroscopy of white mica 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima... White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima... Ustunisik, Gokce K. oth Duke, Edward F. oth Ünlüer, Ali T. oth Yıldırım, Demet K. oth Flores, Kennet E. oth Enthalten in Elsevier Science Zhu, Guo ELSEVIER Mechanism for anisotropic ejection of atoms from fcc (100) metal surface by low-energy argon ion bombardment: Molecular dynamics simulation 2021 an international journal of mineralogy, petrology, and geochemistry Amsterdam [u.a.] (DE-627)ELV006642446 volume:408 year:2022 pages:0 https://doi.org/10.1016/j.lithos.2021.106533 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 58.19 Verfahrenstechnik: Sonstiges VZ 33.09 Physik unter besonderen Bedingungen VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 408 2022 0 |
spelling |
10.1016/j.lithos.2021.106533 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001626.pica (DE-627)ELV056327579 (ELSEVIER)S0024-4937(21)00576-4 DE-627 ger DE-627 rakwb eng 530 VZ 58.19 bkl 33.09 bkl 52.78 bkl Bradley, Taran W. verfasserin aut Qualitative barometry of high P/T rocks with field based NIR spectroscopy of white mica 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima... White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima... Ustunisik, Gokce K. oth Duke, Edward F. oth Ünlüer, Ali T. oth Yıldırım, Demet K. oth Flores, Kennet E. oth Enthalten in Elsevier Science Zhu, Guo ELSEVIER Mechanism for anisotropic ejection of atoms from fcc (100) metal surface by low-energy argon ion bombardment: Molecular dynamics simulation 2021 an international journal of mineralogy, petrology, and geochemistry Amsterdam [u.a.] (DE-627)ELV006642446 volume:408 year:2022 pages:0 https://doi.org/10.1016/j.lithos.2021.106533 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 58.19 Verfahrenstechnik: Sonstiges VZ 33.09 Physik unter besonderen Bedingungen VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 408 2022 0 |
allfields_unstemmed |
10.1016/j.lithos.2021.106533 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001626.pica (DE-627)ELV056327579 (ELSEVIER)S0024-4937(21)00576-4 DE-627 ger DE-627 rakwb eng 530 VZ 58.19 bkl 33.09 bkl 52.78 bkl Bradley, Taran W. verfasserin aut Qualitative barometry of high P/T rocks with field based NIR spectroscopy of white mica 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima... White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima... Ustunisik, Gokce K. oth Duke, Edward F. oth Ünlüer, Ali T. oth Yıldırım, Demet K. oth Flores, Kennet E. oth Enthalten in Elsevier Science Zhu, Guo ELSEVIER Mechanism for anisotropic ejection of atoms from fcc (100) metal surface by low-energy argon ion bombardment: Molecular dynamics simulation 2021 an international journal of mineralogy, petrology, and geochemistry Amsterdam [u.a.] (DE-627)ELV006642446 volume:408 year:2022 pages:0 https://doi.org/10.1016/j.lithos.2021.106533 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 58.19 Verfahrenstechnik: Sonstiges VZ 33.09 Physik unter besonderen Bedingungen VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 408 2022 0 |
allfieldsGer |
10.1016/j.lithos.2021.106533 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001626.pica (DE-627)ELV056327579 (ELSEVIER)S0024-4937(21)00576-4 DE-627 ger DE-627 rakwb eng 530 VZ 58.19 bkl 33.09 bkl 52.78 bkl Bradley, Taran W. verfasserin aut Qualitative barometry of high P/T rocks with field based NIR spectroscopy of white mica 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima... White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima... Ustunisik, Gokce K. oth Duke, Edward F. oth Ünlüer, Ali T. oth Yıldırım, Demet K. oth Flores, Kennet E. oth Enthalten in Elsevier Science Zhu, Guo ELSEVIER Mechanism for anisotropic ejection of atoms from fcc (100) metal surface by low-energy argon ion bombardment: Molecular dynamics simulation 2021 an international journal of mineralogy, petrology, and geochemistry Amsterdam [u.a.] (DE-627)ELV006642446 volume:408 year:2022 pages:0 https://doi.org/10.1016/j.lithos.2021.106533 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 58.19 Verfahrenstechnik: Sonstiges VZ 33.09 Physik unter besonderen Bedingungen VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 408 2022 0 |
allfieldsSound |
10.1016/j.lithos.2021.106533 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001626.pica (DE-627)ELV056327579 (ELSEVIER)S0024-4937(21)00576-4 DE-627 ger DE-627 rakwb eng 530 VZ 58.19 bkl 33.09 bkl 52.78 bkl Bradley, Taran W. verfasserin aut Qualitative barometry of high P/T rocks with field based NIR spectroscopy of white mica 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima... White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima... Ustunisik, Gokce K. oth Duke, Edward F. oth Ünlüer, Ali T. oth Yıldırım, Demet K. oth Flores, Kennet E. oth Enthalten in Elsevier Science Zhu, Guo ELSEVIER Mechanism for anisotropic ejection of atoms from fcc (100) metal surface by low-energy argon ion bombardment: Molecular dynamics simulation 2021 an international journal of mineralogy, petrology, and geochemistry Amsterdam [u.a.] (DE-627)ELV006642446 volume:408 year:2022 pages:0 https://doi.org/10.1016/j.lithos.2021.106533 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 58.19 Verfahrenstechnik: Sonstiges VZ 33.09 Physik unter besonderen Bedingungen VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 408 2022 0 |
language |
English |
source |
Enthalten in Mechanism for anisotropic ejection of atoms from fcc (100) metal surface by low-energy argon ion bombardment: Molecular dynamics simulation Amsterdam [u.a.] volume:408 year:2022 pages:0 |
sourceStr |
Enthalten in Mechanism for anisotropic ejection of atoms from fcc (100) metal surface by low-energy argon ion bombardment: Molecular dynamics simulation Amsterdam [u.a.] volume:408 year:2022 pages:0 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Sonstiges Physik unter besonderen Bedingungen Oberflächentechnik Wärmebehandlung |
institution |
findex.gbv.de |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Mechanism for anisotropic ejection of atoms from fcc (100) metal surface by low-energy argon ion bombardment: Molecular dynamics simulation |
authorswithroles_txt_mv |
Bradley, Taran W. @@aut@@ Ustunisik, Gokce K. @@oth@@ Duke, Edward F. @@oth@@ Ünlüer, Ali T. @@oth@@ Yıldırım, Demet K. @@oth@@ Flores, Kennet E. @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV006642446 |
dewey-sort |
3530 |
id |
ELV056327579 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056327579</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626043115.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.lithos.2021.106533</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001626.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056327579</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0024-4937(21)00576-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.19</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bradley, Taran W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Qualitative barometry of high P/T rocks with field based NIR spectroscopy of white mica</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima...</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima...</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ustunisik, Gokce K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duke, Edward F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ünlüer, Ali T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yıldırım, Demet K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Flores, Kennet E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zhu, Guo ELSEVIER</subfield><subfield code="t">Mechanism for anisotropic ejection of atoms from fcc (100) metal surface by low-energy argon ion bombardment: Molecular dynamics simulation</subfield><subfield code="d">2021</subfield><subfield code="d">an international journal of mineralogy, petrology, and geochemistry</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006642446</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:408</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.lithos.2021.106533</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.19</subfield><subfield code="j">Verfahrenstechnik: Sonstiges</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.09</subfield><subfield code="j">Physik unter besonderen Bedingungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">408</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Bradley, Taran W. |
spellingShingle |
Bradley, Taran W. ddc 530 bkl 58.19 bkl 33.09 bkl 52.78 Qualitative barometry of high P/T rocks with field based NIR spectroscopy of white mica |
authorStr |
Bradley, Taran W. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006642446 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 VZ 58.19 bkl 33.09 bkl 52.78 bkl Qualitative barometry of high P/T rocks with field based NIR spectroscopy of white mica |
topic |
ddc 530 bkl 58.19 bkl 33.09 bkl 52.78 |
topic_unstemmed |
ddc 530 bkl 58.19 bkl 33.09 bkl 52.78 |
topic_browse |
ddc 530 bkl 58.19 bkl 33.09 bkl 52.78 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
g k u gk gku e f d ef efd a t ü at atü d k y dk dky k e f ke kef |
hierarchy_parent_title |
Mechanism for anisotropic ejection of atoms from fcc (100) metal surface by low-energy argon ion bombardment: Molecular dynamics simulation |
hierarchy_parent_id |
ELV006642446 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Mechanism for anisotropic ejection of atoms from fcc (100) metal surface by low-energy argon ion bombardment: Molecular dynamics simulation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006642446 |
title |
Qualitative barometry of high P/T rocks with field based NIR spectroscopy of white mica |
ctrlnum |
(DE-627)ELV056327579 (ELSEVIER)S0024-4937(21)00576-4 |
title_full |
Qualitative barometry of high P/T rocks with field based NIR spectroscopy of white mica |
author_sort |
Bradley, Taran W. |
journal |
Mechanism for anisotropic ejection of atoms from fcc (100) metal surface by low-energy argon ion bombardment: Molecular dynamics simulation |
journalStr |
Mechanism for anisotropic ejection of atoms from fcc (100) metal surface by low-energy argon ion bombardment: Molecular dynamics simulation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Bradley, Taran W. |
container_volume |
408 |
class |
530 VZ 58.19 bkl 33.09 bkl 52.78 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Bradley, Taran W. |
doi_str_mv |
10.1016/j.lithos.2021.106533 |
dewey-full |
530 |
title_sort |
qualitative barometry of high p/t rocks with field based nir spectroscopy of white mica |
title_auth |
Qualitative barometry of high P/T rocks with field based NIR spectroscopy of white mica |
abstract |
White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima... |
abstractGer |
White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima... |
abstract_unstemmed |
White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima... |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Qualitative barometry of high P/T rocks with field based NIR spectroscopy of white mica |
url |
https://doi.org/10.1016/j.lithos.2021.106533 |
remote_bool |
true |
author2 |
Ustunisik, Gokce K. Duke, Edward F. Ünlüer, Ali T. Yıldırım, Demet K. Flores, Kennet E. |
author2Str |
Ustunisik, Gokce K. Duke, Edward F. Ünlüer, Ali T. Yıldırım, Demet K. Flores, Kennet E. |
ppnlink |
ELV006642446 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.lithos.2021.106533 |
up_date |
2024-07-06T20:04:13.429Z |
_version_ |
1803861364237664256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056327579</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626043115.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220105s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.lithos.2021.106533</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001626.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056327579</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0024-4937(21)00576-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.19</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bradley, Taran W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Qualitative barometry of high P/T rocks with field based NIR spectroscopy of white mica</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima...</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">White micas (muscovite, phengite, paragonite) are widespread in rocks of high-pressure, low-temperature (high P/T) terranes. Metamorphism in these settings occurs over a wide range in pressure and a relatively narrow range in temperature. Pressure increase results in forward progress of the aluminoceladonite exchange (Al-Cel, AlIV + AlVI=SiIV+[Fe2+,Mg]VI) in the muscovite-phengite series, ultimately producing very high Si content in white micas in blueschists and eclogites. Visible to near-infrared spectroscopy (Vis–NIR, 350–2500 nm) provides an effective monitor of the Al-Cel exchange because the substitution of Fe and Mg for Al in the octahedral site shifts the frequency of the Al-OH absorption band near 2200 nm to longer wavelengths. Importantly, Vis–NIR measurements are readily acquired with field spectrometers and similar data can be acquired with airborne and spaceborne imaging spectrometers. Here we present results of a field-based Vis–NIR study into variation of white mica Al-OH wavelength values and the potential to perform qualitative field-based barometry in high P/T terranes. Field spectra and samples were collected in five regions in northwest Turkey in which previous studies documented metamorphism over a wide range of pressure at relatively constant temperature. Spectra were collected from 186 samples and 20 samples were prepared for electron microprobe analysis (EMPA) and scanning electron microscopy energy dispersive spectroscopy (SEM-EDS) to determine mineral assemblages and white mica compositions. To address possible bulk composition effects, different lithologies were evaluated, broadly categorized as metabasite, metacarbonate, and metapelite. The field-based Al-OH wavelength values range from 2190 nm to 2235 nm, which is equal to the full range of published values for metamorphic or hydrothermal white micas. White mica Si contents range from 2.97 a.p.f.u. (on an 11‑oxygen basis) in paragonite in retrograded calc-schist to 3.66 a.p.f.u. in lawsonite blueschist. In each high P/T region the field-based Al-OH wavelength values and white mica compositions are highly variable at scales of 100 s of meters to thin section scale. We interpret this to record variable retrograde re-equilibration at pressures lower than the peak pressure. Despite the variability, the maximum Al-OH wavelength values in each region, taken to represent the highest Al-Cel content in white mica and the most pristine high-pressure assemblage, correlate well with estima...</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ustunisik, Gokce K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duke, Edward F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ünlüer, Ali T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yıldırım, Demet K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Flores, Kennet E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zhu, Guo ELSEVIER</subfield><subfield code="t">Mechanism for anisotropic ejection of atoms from fcc (100) metal surface by low-energy argon ion bombardment: Molecular dynamics simulation</subfield><subfield code="d">2021</subfield><subfield code="d">an international journal of mineralogy, petrology, and geochemistry</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006642446</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:408</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.lithos.2021.106533</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.19</subfield><subfield code="j">Verfahrenstechnik: Sonstiges</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.09</subfield><subfield code="j">Physik unter besonderen Bedingungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">408</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4021063 |