A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces
The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigen...
Ausführliche Beschreibung
Autor*in: |
Xu, Wei-Ru [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation - Moreira, Zeus S. ELSEVIER, 2021, New York, NY |
---|---|
Übergeordnetes Werk: |
volume:419 ; year:2022 ; day:15 ; month:04 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.amc.2021.126853 |
---|
Katalog-ID: |
ELV056457707 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV056457707 | ||
003 | DE-627 | ||
005 | 20230626043338.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220205s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.amc.2021.126853 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001951.pica |
035 | |a (DE-627)ELV056457707 | ||
035 | |a (ELSEVIER)S0096-3003(21)00936-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a UA 1000 |q VZ |2 rvk |0 (DE-625)rvk/145215: | ||
084 | |a 33.40 |2 bkl | ||
084 | |a 33.50 |2 bkl | ||
084 | |a 39.22 |2 bkl | ||
100 | 1 | |a Xu, Wei-Ru |e verfasserin |4 aut | |
245 | 1 | 0 | |a A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective. | ||
520 | |a The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective. | ||
700 | 1 | |a Bebiano, Natália |4 oth | |
700 | 1 | |a Chen, Guo-Liang |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Moreira, Zeus S. ELSEVIER |t Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |d 2021 |g New York, NY |w (DE-627)ELV006733727 |
773 | 1 | 8 | |g volume:419 |g year:2022 |g day:15 |g month:04 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.amc.2021.126853 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OPC-AST | ||
936 | r | v | |a UA 1000 |b Referateblätter und Zeitschriften |k Physik |k Referateblätter und Zeitschriften |0 (DE-625)rvk/145215: |0 (DE-576)329175343 |
936 | b | k | |a 33.40 |j Kernphysik |q VZ |
936 | b | k | |a 33.50 |j Physik der Elementarteilchen und Felder: Allgemeines |q VZ |
936 | b | k | |a 39.22 |j Astrophysik |q VZ |
951 | |a AR | ||
952 | |d 419 |j 2022 |b 15 |c 0415 |h 0 |
author_variant |
w r x wrx |
---|---|
matchkey_str |
xuweirubebianonatliachenguoliang:2022----:rdcinloihfreosrcigeidcaoiar |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
33.40 33.50 39.22 |
publishDate |
2022 |
allfields |
10.1016/j.amc.2021.126853 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001951.pica (DE-627)ELV056457707 (ELSEVIER)S0096-3003(21)00936-X DE-627 ger DE-627 rakwb eng 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215: 33.40 bkl 33.50 bkl 39.22 bkl Xu, Wei-Ru verfasserin aut A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective. The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective. Bebiano, Natália oth Chen, Guo-Liang oth Enthalten in Elsevier Moreira, Zeus S. ELSEVIER Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation 2021 New York, NY (DE-627)ELV006733727 volume:419 year:2022 day:15 month:04 pages:0 https://doi.org/10.1016/j.amc.2021.126853 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST UA 1000 Referateblätter und Zeitschriften Physik Referateblätter und Zeitschriften (DE-625)rvk/145215: (DE-576)329175343 33.40 Kernphysik VZ 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 39.22 Astrophysik VZ AR 419 2022 15 0415 0 |
spelling |
10.1016/j.amc.2021.126853 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001951.pica (DE-627)ELV056457707 (ELSEVIER)S0096-3003(21)00936-X DE-627 ger DE-627 rakwb eng 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215: 33.40 bkl 33.50 bkl 39.22 bkl Xu, Wei-Ru verfasserin aut A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective. The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective. Bebiano, Natália oth Chen, Guo-Liang oth Enthalten in Elsevier Moreira, Zeus S. ELSEVIER Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation 2021 New York, NY (DE-627)ELV006733727 volume:419 year:2022 day:15 month:04 pages:0 https://doi.org/10.1016/j.amc.2021.126853 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST UA 1000 Referateblätter und Zeitschriften Physik Referateblätter und Zeitschriften (DE-625)rvk/145215: (DE-576)329175343 33.40 Kernphysik VZ 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 39.22 Astrophysik VZ AR 419 2022 15 0415 0 |
allfields_unstemmed |
10.1016/j.amc.2021.126853 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001951.pica (DE-627)ELV056457707 (ELSEVIER)S0096-3003(21)00936-X DE-627 ger DE-627 rakwb eng 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215: 33.40 bkl 33.50 bkl 39.22 bkl Xu, Wei-Ru verfasserin aut A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective. The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective. Bebiano, Natália oth Chen, Guo-Liang oth Enthalten in Elsevier Moreira, Zeus S. ELSEVIER Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation 2021 New York, NY (DE-627)ELV006733727 volume:419 year:2022 day:15 month:04 pages:0 https://doi.org/10.1016/j.amc.2021.126853 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST UA 1000 Referateblätter und Zeitschriften Physik Referateblätter und Zeitschriften (DE-625)rvk/145215: (DE-576)329175343 33.40 Kernphysik VZ 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 39.22 Astrophysik VZ AR 419 2022 15 0415 0 |
allfieldsGer |
10.1016/j.amc.2021.126853 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001951.pica (DE-627)ELV056457707 (ELSEVIER)S0096-3003(21)00936-X DE-627 ger DE-627 rakwb eng 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215: 33.40 bkl 33.50 bkl 39.22 bkl Xu, Wei-Ru verfasserin aut A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective. The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective. Bebiano, Natália oth Chen, Guo-Liang oth Enthalten in Elsevier Moreira, Zeus S. ELSEVIER Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation 2021 New York, NY (DE-627)ELV006733727 volume:419 year:2022 day:15 month:04 pages:0 https://doi.org/10.1016/j.amc.2021.126853 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST UA 1000 Referateblätter und Zeitschriften Physik Referateblätter und Zeitschriften (DE-625)rvk/145215: (DE-576)329175343 33.40 Kernphysik VZ 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 39.22 Astrophysik VZ AR 419 2022 15 0415 0 |
allfieldsSound |
10.1016/j.amc.2021.126853 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001951.pica (DE-627)ELV056457707 (ELSEVIER)S0096-3003(21)00936-X DE-627 ger DE-627 rakwb eng 530 VZ UA 1000 VZ rvk (DE-625)rvk/145215: 33.40 bkl 33.50 bkl 39.22 bkl Xu, Wei-Ru verfasserin aut A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective. The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective. Bebiano, Natália oth Chen, Guo-Liang oth Enthalten in Elsevier Moreira, Zeus S. ELSEVIER Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation 2021 New York, NY (DE-627)ELV006733727 volume:419 year:2022 day:15 month:04 pages:0 https://doi.org/10.1016/j.amc.2021.126853 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST UA 1000 Referateblätter und Zeitschriften Physik Referateblätter und Zeitschriften (DE-625)rvk/145215: (DE-576)329175343 33.40 Kernphysik VZ 33.50 Physik der Elementarteilchen und Felder: Allgemeines VZ 39.22 Astrophysik VZ AR 419 2022 15 0415 0 |
language |
English |
source |
Enthalten in Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation New York, NY volume:419 year:2022 day:15 month:04 pages:0 |
sourceStr |
Enthalten in Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation New York, NY volume:419 year:2022 day:15 month:04 pages:0 |
format_phy_str_mv |
Article |
bklname |
Kernphysik Physik der Elementarteilchen und Felder: Allgemeines Astrophysik |
institution |
findex.gbv.de |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |
authorswithroles_txt_mv |
Xu, Wei-Ru @@aut@@ Bebiano, Natália @@oth@@ Chen, Guo-Liang @@oth@@ |
publishDateDaySort_date |
2022-01-15T00:00:00Z |
hierarchy_top_id |
ELV006733727 |
dewey-sort |
3530 |
id |
ELV056457707 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056457707</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626043338.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220205s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.amc.2021.126853</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001951.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056457707</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0096-3003(21)00936-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/145215:</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Wei-Ru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bebiano, Natália</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Guo-Liang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Moreira, Zeus S. ELSEVIER</subfield><subfield code="t">Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation</subfield><subfield code="d">2021</subfield><subfield code="g">New York, NY</subfield><subfield code="w">(DE-627)ELV006733727</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:419</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.amc.2021.126853</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1000</subfield><subfield code="b">Referateblätter und Zeitschriften</subfield><subfield code="k">Physik</subfield><subfield code="k">Referateblätter und Zeitschriften</subfield><subfield code="0">(DE-625)rvk/145215:</subfield><subfield code="0">(DE-576)329175343</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.40</subfield><subfield code="j">Kernphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.50</subfield><subfield code="j">Physik der Elementarteilchen und Felder: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.22</subfield><subfield code="j">Astrophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">419</subfield><subfield code="j">2022</subfield><subfield code="b">15</subfield><subfield code="c">0415</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Xu, Wei-Ru |
spellingShingle |
Xu, Wei-Ru ddc 530 rvk UA 1000 bkl 33.40 bkl 33.50 bkl 39.22 A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces |
authorStr |
Xu, Wei-Ru |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006733727 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 VZ UA 1000 VZ rvk (DE-625)rvk/145215 33.40 bkl 33.50 bkl 39.22 bkl A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces |
topic |
ddc 530 rvk UA 1000 bkl 33.40 bkl 33.50 bkl 39.22 |
topic_unstemmed |
ddc 530 rvk UA 1000 bkl 33.40 bkl 33.50 bkl 39.22 |
topic_browse |
ddc 530 rvk UA 1000 bkl 33.40 bkl 33.50 bkl 39.22 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
n b nb g l c glc |
hierarchy_parent_title |
Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |
hierarchy_parent_id |
ELV006733727 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006733727 |
title |
A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces |
ctrlnum |
(DE-627)ELV056457707 (ELSEVIER)S0096-3003(21)00936-X |
title_full |
A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces |
author_sort |
Xu, Wei-Ru |
journal |
Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |
journalStr |
Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Xu, Wei-Ru |
container_volume |
419 |
class |
530 VZ UA 1000 VZ rvk (DE-625)rvk/145215 33.40 bkl 33.50 bkl 39.22 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xu, Wei-Ru |
doi_str_mv |
10.1016/j.amc.2021.126853 |
normlink |
RVK/145215: 329175343 |
normlink_prefix_str_mv |
(DE-625)rvk/145215: (DE-576)329175343 |
dewey-full |
530 |
title_sort |
a reduction algorithm for reconstructing periodic jacobi matrices in minkowski spaces |
title_auth |
A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces |
abstract |
The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective. |
abstractGer |
The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective. |
abstract_unstemmed |
The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHY SSG-OPC-AST |
title_short |
A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces |
url |
https://doi.org/10.1016/j.amc.2021.126853 |
remote_bool |
true |
author2 |
Bebiano, Natália Chen, Guo-Liang |
author2Str |
Bebiano, Natália Chen, Guo-Liang |
ppnlink |
ELV006733727 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.amc.2021.126853 |
up_date |
2024-07-06T20:26:36.052Z |
_version_ |
1803862772077821952 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056457707</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626043338.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220205s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.amc.2021.126853</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001951.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056457707</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0096-3003(21)00936-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/145215:</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Wei-Ru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A reduction algorithm for reconstructing periodic Jacobi matrices in Minkowski spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The periodic Jacobi inverse eigenvalue problem concerns the reconstruction of a periodic Jacobi matrix from prescribed spectral data. In Minkowski spaces, with a given signature operator H = diag ( 1 , 1 , … , 1 , − 1 ) , the corresponding matrix is a periodic pseudo-Jacobi matrix. The inverse eigenvalue problem for such matrices consists in the reconstruction of pseudo-Jacobi matrices, with the same order and signature operator H . In this paper we solve this problem by applying Sylvester’s identity and Householder transformation. The solution number and the corresponding reconstruction algorithm are here exhibited, and illustrative numerical examples are given. Comparing this approach with the known Lanczos algorithm for reconstructing pseudo-Jacobi matrices, our method is shown to be more stable and effective.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bebiano, Natália</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Guo-Liang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Moreira, Zeus S. ELSEVIER</subfield><subfield code="t">Geodesic synchrotron radiation in black hole spacetimes: Analytical investigation</subfield><subfield code="d">2021</subfield><subfield code="g">New York, NY</subfield><subfield code="w">(DE-627)ELV006733727</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:419</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:15</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.amc.2021.126853</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1000</subfield><subfield code="b">Referateblätter und Zeitschriften</subfield><subfield code="k">Physik</subfield><subfield code="k">Referateblätter und Zeitschriften</subfield><subfield code="0">(DE-625)rvk/145215:</subfield><subfield code="0">(DE-576)329175343</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.40</subfield><subfield code="j">Kernphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.50</subfield><subfield code="j">Physik der Elementarteilchen und Felder: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.22</subfield><subfield code="j">Astrophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">419</subfield><subfield code="j">2022</subfield><subfield code="b">15</subfield><subfield code="c">0415</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401019 |