The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study
• A practical guideline on leveraging graph neural networks (GNNs) for realizing intelligent fault diagnostics and prognostics. • A novel intelligent fault diagnostics and prognostics framework based on GNNs is established to illustrate how the proposed guideline works. • In this framework, three ty...
Ausführliche Beschreibung
Autor*in: |
Li, Tianfu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
Intelligent fault diagnostics and prognostics |
---|
Übergeordnetes Werk: |
Enthalten in: Species loss from land use of oil palm plantations in Thailand - Jaroenkietkajorn, Ukrit ELSEVIER, 2021, mssp, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:168 ; year:2022 ; day:1 ; month:04 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.ymssp.2021.108653 |
---|
Katalog-ID: |
ELV056518927 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV056518927 | ||
003 | DE-627 | ||
005 | 20230624232524.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220205s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ymssp.2021.108653 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001652.pica |
035 | |a (DE-627)ELV056518927 | ||
035 | |a (ELSEVIER)S0888-3270(21)00979-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 630 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Li, Tianfu |e verfasserin |4 aut | |
245 | 1 | 4 | |a The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • A practical guideline on leveraging graph neural networks (GNNs) for realizing intelligent fault diagnostics and prognostics. • A novel intelligent fault diagnostics and prognostics framework based on GNNs is established to illustrate how the proposed guideline works. • In this framework, three types graph construction methods are provided, and seven kinds of graph convolutional networks with four graph pooling methods are investigated. • A benchmark study of these models is carried out on eight datasets, including six fault diagnosis datasets and two prognosis datasets. | ||
650 | 7 | |a Intelligent fault diagnostics and prognostics |2 Elsevier | |
650 | 7 | |a Graph neural networks |2 Elsevier | |
650 | 7 | |a Benchmark results |2 Elsevier | |
650 | 7 | |a Prognostics and health management |2 Elsevier | |
650 | 7 | |a Practical guideline |2 Elsevier | |
700 | 1 | |a Zhou, Zheng |4 oth | |
700 | 1 | |a Li, Sinan |4 oth | |
700 | 1 | |a Sun, Chuang |4 oth | |
700 | 1 | |a Yan, Ruqiang |4 oth | |
700 | 1 | |a Chen, Xuefeng |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Jaroenkietkajorn, Ukrit ELSEVIER |t Species loss from land use of oil palm plantations in Thailand |d 2021 |d mssp |g Amsterdam [u.a.] |w (DE-627)ELV007151810 |
773 | 1 | 8 | |g volume:168 |g year:2022 |g day:1 |g month:04 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ymssp.2021.108653 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 168 |j 2022 |b 1 |c 0401 |h 0 |
author_variant |
t l tl |
---|---|
matchkey_str |
litianfuzhouzhenglisinansunchuangyanruqi:2022----:heegngaherlewrsoitlietaldansisnponsis |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1016/j.ymssp.2021.108653 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001652.pica (DE-627)ELV056518927 (ELSEVIER)S0888-3270(21)00979-1 DE-627 ger DE-627 rakwb eng 570 630 VZ BIODIV DE-30 fid Li, Tianfu verfasserin aut The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A practical guideline on leveraging graph neural networks (GNNs) for realizing intelligent fault diagnostics and prognostics. • A novel intelligent fault diagnostics and prognostics framework based on GNNs is established to illustrate how the proposed guideline works. • In this framework, three types graph construction methods are provided, and seven kinds of graph convolutional networks with four graph pooling methods are investigated. • A benchmark study of these models is carried out on eight datasets, including six fault diagnosis datasets and two prognosis datasets. Intelligent fault diagnostics and prognostics Elsevier Graph neural networks Elsevier Benchmark results Elsevier Prognostics and health management Elsevier Practical guideline Elsevier Zhou, Zheng oth Li, Sinan oth Sun, Chuang oth Yan, Ruqiang oth Chen, Xuefeng oth Enthalten in Elsevier Jaroenkietkajorn, Ukrit ELSEVIER Species loss from land use of oil palm plantations in Thailand 2021 mssp Amsterdam [u.a.] (DE-627)ELV007151810 volume:168 year:2022 day:1 month:04 pages:0 https://doi.org/10.1016/j.ymssp.2021.108653 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA AR 168 2022 1 0401 0 |
spelling |
10.1016/j.ymssp.2021.108653 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001652.pica (DE-627)ELV056518927 (ELSEVIER)S0888-3270(21)00979-1 DE-627 ger DE-627 rakwb eng 570 630 VZ BIODIV DE-30 fid Li, Tianfu verfasserin aut The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A practical guideline on leveraging graph neural networks (GNNs) for realizing intelligent fault diagnostics and prognostics. • A novel intelligent fault diagnostics and prognostics framework based on GNNs is established to illustrate how the proposed guideline works. • In this framework, three types graph construction methods are provided, and seven kinds of graph convolutional networks with four graph pooling methods are investigated. • A benchmark study of these models is carried out on eight datasets, including six fault diagnosis datasets and two prognosis datasets. Intelligent fault diagnostics and prognostics Elsevier Graph neural networks Elsevier Benchmark results Elsevier Prognostics and health management Elsevier Practical guideline Elsevier Zhou, Zheng oth Li, Sinan oth Sun, Chuang oth Yan, Ruqiang oth Chen, Xuefeng oth Enthalten in Elsevier Jaroenkietkajorn, Ukrit ELSEVIER Species loss from land use of oil palm plantations in Thailand 2021 mssp Amsterdam [u.a.] (DE-627)ELV007151810 volume:168 year:2022 day:1 month:04 pages:0 https://doi.org/10.1016/j.ymssp.2021.108653 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA AR 168 2022 1 0401 0 |
allfields_unstemmed |
10.1016/j.ymssp.2021.108653 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001652.pica (DE-627)ELV056518927 (ELSEVIER)S0888-3270(21)00979-1 DE-627 ger DE-627 rakwb eng 570 630 VZ BIODIV DE-30 fid Li, Tianfu verfasserin aut The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A practical guideline on leveraging graph neural networks (GNNs) for realizing intelligent fault diagnostics and prognostics. • A novel intelligent fault diagnostics and prognostics framework based on GNNs is established to illustrate how the proposed guideline works. • In this framework, three types graph construction methods are provided, and seven kinds of graph convolutional networks with four graph pooling methods are investigated. • A benchmark study of these models is carried out on eight datasets, including six fault diagnosis datasets and two prognosis datasets. Intelligent fault diagnostics and prognostics Elsevier Graph neural networks Elsevier Benchmark results Elsevier Prognostics and health management Elsevier Practical guideline Elsevier Zhou, Zheng oth Li, Sinan oth Sun, Chuang oth Yan, Ruqiang oth Chen, Xuefeng oth Enthalten in Elsevier Jaroenkietkajorn, Ukrit ELSEVIER Species loss from land use of oil palm plantations in Thailand 2021 mssp Amsterdam [u.a.] (DE-627)ELV007151810 volume:168 year:2022 day:1 month:04 pages:0 https://doi.org/10.1016/j.ymssp.2021.108653 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA AR 168 2022 1 0401 0 |
allfieldsGer |
10.1016/j.ymssp.2021.108653 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001652.pica (DE-627)ELV056518927 (ELSEVIER)S0888-3270(21)00979-1 DE-627 ger DE-627 rakwb eng 570 630 VZ BIODIV DE-30 fid Li, Tianfu verfasserin aut The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A practical guideline on leveraging graph neural networks (GNNs) for realizing intelligent fault diagnostics and prognostics. • A novel intelligent fault diagnostics and prognostics framework based on GNNs is established to illustrate how the proposed guideline works. • In this framework, three types graph construction methods are provided, and seven kinds of graph convolutional networks with four graph pooling methods are investigated. • A benchmark study of these models is carried out on eight datasets, including six fault diagnosis datasets and two prognosis datasets. Intelligent fault diagnostics and prognostics Elsevier Graph neural networks Elsevier Benchmark results Elsevier Prognostics and health management Elsevier Practical guideline Elsevier Zhou, Zheng oth Li, Sinan oth Sun, Chuang oth Yan, Ruqiang oth Chen, Xuefeng oth Enthalten in Elsevier Jaroenkietkajorn, Ukrit ELSEVIER Species loss from land use of oil palm plantations in Thailand 2021 mssp Amsterdam [u.a.] (DE-627)ELV007151810 volume:168 year:2022 day:1 month:04 pages:0 https://doi.org/10.1016/j.ymssp.2021.108653 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA AR 168 2022 1 0401 0 |
allfieldsSound |
10.1016/j.ymssp.2021.108653 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001652.pica (DE-627)ELV056518927 (ELSEVIER)S0888-3270(21)00979-1 DE-627 ger DE-627 rakwb eng 570 630 VZ BIODIV DE-30 fid Li, Tianfu verfasserin aut The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study 2022 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A practical guideline on leveraging graph neural networks (GNNs) for realizing intelligent fault diagnostics and prognostics. • A novel intelligent fault diagnostics and prognostics framework based on GNNs is established to illustrate how the proposed guideline works. • In this framework, three types graph construction methods are provided, and seven kinds of graph convolutional networks with four graph pooling methods are investigated. • A benchmark study of these models is carried out on eight datasets, including six fault diagnosis datasets and two prognosis datasets. Intelligent fault diagnostics and prognostics Elsevier Graph neural networks Elsevier Benchmark results Elsevier Prognostics and health management Elsevier Practical guideline Elsevier Zhou, Zheng oth Li, Sinan oth Sun, Chuang oth Yan, Ruqiang oth Chen, Xuefeng oth Enthalten in Elsevier Jaroenkietkajorn, Ukrit ELSEVIER Species loss from land use of oil palm plantations in Thailand 2021 mssp Amsterdam [u.a.] (DE-627)ELV007151810 volume:168 year:2022 day:1 month:04 pages:0 https://doi.org/10.1016/j.ymssp.2021.108653 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA AR 168 2022 1 0401 0 |
language |
English |
source |
Enthalten in Species loss from land use of oil palm plantations in Thailand Amsterdam [u.a.] volume:168 year:2022 day:1 month:04 pages:0 |
sourceStr |
Enthalten in Species loss from land use of oil palm plantations in Thailand Amsterdam [u.a.] volume:168 year:2022 day:1 month:04 pages:0 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Intelligent fault diagnostics and prognostics Graph neural networks Benchmark results Prognostics and health management Practical guideline |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Species loss from land use of oil palm plantations in Thailand |
authorswithroles_txt_mv |
Li, Tianfu @@aut@@ Zhou, Zheng @@oth@@ Li, Sinan @@oth@@ Sun, Chuang @@oth@@ Yan, Ruqiang @@oth@@ Chen, Xuefeng @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV007151810 |
dewey-sort |
3570 |
id |
ELV056518927 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056518927</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624232524.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220205s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ymssp.2021.108653</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001652.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056518927</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0888-3270(21)00979-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">630</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Tianfu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• A practical guideline on leveraging graph neural networks (GNNs) for realizing intelligent fault diagnostics and prognostics. • A novel intelligent fault diagnostics and prognostics framework based on GNNs is established to illustrate how the proposed guideline works. • In this framework, three types graph construction methods are provided, and seven kinds of graph convolutional networks with four graph pooling methods are investigated. • A benchmark study of these models is carried out on eight datasets, including six fault diagnosis datasets and two prognosis datasets.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Intelligent fault diagnostics and prognostics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graph neural networks</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Benchmark results</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Prognostics and health management</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Practical guideline</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Zheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Sinan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Chuang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Ruqiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xuefeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Jaroenkietkajorn, Ukrit ELSEVIER</subfield><subfield code="t">Species loss from land use of oil palm plantations in Thailand</subfield><subfield code="d">2021</subfield><subfield code="d">mssp</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007151810</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:168</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:1</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ymssp.2021.108653</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">168</subfield><subfield code="j">2022</subfield><subfield code="b">1</subfield><subfield code="c">0401</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Li, Tianfu |
spellingShingle |
Li, Tianfu ddc 570 fid BIODIV Elsevier Intelligent fault diagnostics and prognostics Elsevier Graph neural networks Elsevier Benchmark results Elsevier Prognostics and health management Elsevier Practical guideline The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study |
authorStr |
Li, Tianfu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV007151810 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 630 - Agriculture & related technologies |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 630 VZ BIODIV DE-30 fid The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study Intelligent fault diagnostics and prognostics Elsevier Graph neural networks Elsevier Benchmark results Elsevier Prognostics and health management Elsevier Practical guideline Elsevier |
topic |
ddc 570 fid BIODIV Elsevier Intelligent fault diagnostics and prognostics Elsevier Graph neural networks Elsevier Benchmark results Elsevier Prognostics and health management Elsevier Practical guideline |
topic_unstemmed |
ddc 570 fid BIODIV Elsevier Intelligent fault diagnostics and prognostics Elsevier Graph neural networks Elsevier Benchmark results Elsevier Prognostics and health management Elsevier Practical guideline |
topic_browse |
ddc 570 fid BIODIV Elsevier Intelligent fault diagnostics and prognostics Elsevier Graph neural networks Elsevier Benchmark results Elsevier Prognostics and health management Elsevier Practical guideline |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
z z zz s l sl c s cs r y ry x c xc |
hierarchy_parent_title |
Species loss from land use of oil palm plantations in Thailand |
hierarchy_parent_id |
ELV007151810 |
dewey-tens |
570 - Life sciences; biology 630 - Agriculture |
hierarchy_top_title |
Species loss from land use of oil palm plantations in Thailand |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV007151810 |
title |
The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study |
ctrlnum |
(DE-627)ELV056518927 (ELSEVIER)S0888-3270(21)00979-1 |
title_full |
The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study |
author_sort |
Li, Tianfu |
journal |
Species loss from land use of oil palm plantations in Thailand |
journalStr |
Species loss from land use of oil palm plantations in Thailand |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Li, Tianfu |
container_volume |
168 |
class |
570 630 VZ BIODIV DE-30 fid |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Tianfu |
doi_str_mv |
10.1016/j.ymssp.2021.108653 |
dewey-full |
570 630 |
title_sort |
emerging graph neural networks for intelligent fault diagnostics and prognostics: a guideline and a benchmark study |
title_auth |
The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study |
abstract |
• A practical guideline on leveraging graph neural networks (GNNs) for realizing intelligent fault diagnostics and prognostics. • A novel intelligent fault diagnostics and prognostics framework based on GNNs is established to illustrate how the proposed guideline works. • In this framework, three types graph construction methods are provided, and seven kinds of graph convolutional networks with four graph pooling methods are investigated. • A benchmark study of these models is carried out on eight datasets, including six fault diagnosis datasets and two prognosis datasets. |
abstractGer |
• A practical guideline on leveraging graph neural networks (GNNs) for realizing intelligent fault diagnostics and prognostics. • A novel intelligent fault diagnostics and prognostics framework based on GNNs is established to illustrate how the proposed guideline works. • In this framework, three types graph construction methods are provided, and seven kinds of graph convolutional networks with four graph pooling methods are investigated. • A benchmark study of these models is carried out on eight datasets, including six fault diagnosis datasets and two prognosis datasets. |
abstract_unstemmed |
• A practical guideline on leveraging graph neural networks (GNNs) for realizing intelligent fault diagnostics and prognostics. • A novel intelligent fault diagnostics and prognostics framework based on GNNs is established to illustrate how the proposed guideline works. • In this framework, three types graph construction methods are provided, and seven kinds of graph convolutional networks with four graph pooling methods are investigated. • A benchmark study of these models is carried out on eight datasets, including six fault diagnosis datasets and two prognosis datasets. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
title_short |
The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study |
url |
https://doi.org/10.1016/j.ymssp.2021.108653 |
remote_bool |
true |
author2 |
Zhou, Zheng Li, Sinan Sun, Chuang Yan, Ruqiang Chen, Xuefeng |
author2Str |
Zhou, Zheng Li, Sinan Sun, Chuang Yan, Ruqiang Chen, Xuefeng |
ppnlink |
ELV007151810 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.ymssp.2021.108653 |
up_date |
2024-07-06T20:37:46.182Z |
_version_ |
1803863474760056832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056518927</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624232524.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220205s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ymssp.2021.108653</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001652.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056518927</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0888-3270(21)00979-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">630</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Tianfu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• A practical guideline on leveraging graph neural networks (GNNs) for realizing intelligent fault diagnostics and prognostics. • A novel intelligent fault diagnostics and prognostics framework based on GNNs is established to illustrate how the proposed guideline works. • In this framework, three types graph construction methods are provided, and seven kinds of graph convolutional networks with four graph pooling methods are investigated. • A benchmark study of these models is carried out on eight datasets, including six fault diagnosis datasets and two prognosis datasets.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Intelligent fault diagnostics and prognostics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graph neural networks</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Benchmark results</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Prognostics and health management</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Practical guideline</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Zheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Sinan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Chuang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Ruqiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xuefeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Jaroenkietkajorn, Ukrit ELSEVIER</subfield><subfield code="t">Species loss from land use of oil palm plantations in Thailand</subfield><subfield code="d">2021</subfield><subfield code="d">mssp</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007151810</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:168</subfield><subfield code="g">year:2022</subfield><subfield code="g">day:1</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ymssp.2021.108653</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">168</subfield><subfield code="j">2022</subfield><subfield code="b">1</subfield><subfield code="c">0401</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.402647 |