Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions
The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relat...
Ausführliche Beschreibung
Autor*in: |
Ghosh, Ritutama [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
22 |
---|
Übergeordnetes Werk: |
Enthalten in: Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation - Duan, Cong ELSEVIER, 2022, an international journal of biochemistry and molecular biology, Paris [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:193 ; year:2022 ; pages:16-37 ; extent:22 |
Links: |
---|
DOI / URN: |
10.1016/j.biochi.2021.10.008 |
---|
Katalog-ID: |
ELV056552599 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV056552599 | ||
003 | DE-627 | ||
005 | 20230626043540.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220205s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.biochi.2021.10.008 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001649.pica |
035 | |a (DE-627)ELV056552599 | ||
035 | |a (ELSEVIER)S0300-9084(21)00245-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
084 | |a 50.70 |2 bkl | ||
100 | 1 | |a Ghosh, Ritutama |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions |
264 | 1 | |c 2022transfer abstract | |
300 | |a 22 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes. | ||
520 | |a The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes. | ||
650 | 7 | |a Drug transport |2 Elsevier | |
650 | 7 | |a Calorimetry |2 Elsevier | |
650 | 7 | |a Serum albumin |2 Elsevier | |
650 | 7 | |a Glycation |2 Elsevier | |
650 | 7 | |a Rational drug design |2 Elsevier | |
700 | 1 | |a Kishore, Nand |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Duan, Cong ELSEVIER |t Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation |d 2022 |d an international journal of biochemistry and molecular biology |g Paris [u.a.] |w (DE-627)ELV008857954 |
773 | 1 | 8 | |g volume:193 |g year:2022 |g pages:16-37 |g extent:22 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.biochi.2021.10.008 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 50.70 |j Energie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 193 |j 2022 |h 16-37 |g 22 |
author_variant |
r g rg |
---|---|
matchkey_str |
ghoshritutamakishorenand:2022----:ehnsipyiohmclnihsnolctoadrgidnbsrmluiip |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
50.70 |
publishDate |
2022 |
allfields |
10.1016/j.biochi.2021.10.008 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001649.pica (DE-627)ELV056552599 (ELSEVIER)S0300-9084(21)00245-5 DE-627 ger DE-627 rakwb eng 600 VZ 50.70 bkl Ghosh, Ritutama verfasserin aut Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions 2022transfer abstract 22 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes. The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes. Drug transport Elsevier Calorimetry Elsevier Serum albumin Elsevier Glycation Elsevier Rational drug design Elsevier Kishore, Nand oth Enthalten in Elsevier Duan, Cong ELSEVIER Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation 2022 an international journal of biochemistry and molecular biology Paris [u.a.] (DE-627)ELV008857954 volume:193 year:2022 pages:16-37 extent:22 https://doi.org/10.1016/j.biochi.2021.10.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.70 Energie: Allgemeines VZ AR 193 2022 16-37 22 |
spelling |
10.1016/j.biochi.2021.10.008 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001649.pica (DE-627)ELV056552599 (ELSEVIER)S0300-9084(21)00245-5 DE-627 ger DE-627 rakwb eng 600 VZ 50.70 bkl Ghosh, Ritutama verfasserin aut Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions 2022transfer abstract 22 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes. The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes. Drug transport Elsevier Calorimetry Elsevier Serum albumin Elsevier Glycation Elsevier Rational drug design Elsevier Kishore, Nand oth Enthalten in Elsevier Duan, Cong ELSEVIER Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation 2022 an international journal of biochemistry and molecular biology Paris [u.a.] (DE-627)ELV008857954 volume:193 year:2022 pages:16-37 extent:22 https://doi.org/10.1016/j.biochi.2021.10.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.70 Energie: Allgemeines VZ AR 193 2022 16-37 22 |
allfields_unstemmed |
10.1016/j.biochi.2021.10.008 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001649.pica (DE-627)ELV056552599 (ELSEVIER)S0300-9084(21)00245-5 DE-627 ger DE-627 rakwb eng 600 VZ 50.70 bkl Ghosh, Ritutama verfasserin aut Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions 2022transfer abstract 22 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes. The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes. Drug transport Elsevier Calorimetry Elsevier Serum albumin Elsevier Glycation Elsevier Rational drug design Elsevier Kishore, Nand oth Enthalten in Elsevier Duan, Cong ELSEVIER Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation 2022 an international journal of biochemistry and molecular biology Paris [u.a.] (DE-627)ELV008857954 volume:193 year:2022 pages:16-37 extent:22 https://doi.org/10.1016/j.biochi.2021.10.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.70 Energie: Allgemeines VZ AR 193 2022 16-37 22 |
allfieldsGer |
10.1016/j.biochi.2021.10.008 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001649.pica (DE-627)ELV056552599 (ELSEVIER)S0300-9084(21)00245-5 DE-627 ger DE-627 rakwb eng 600 VZ 50.70 bkl Ghosh, Ritutama verfasserin aut Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions 2022transfer abstract 22 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes. The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes. Drug transport Elsevier Calorimetry Elsevier Serum albumin Elsevier Glycation Elsevier Rational drug design Elsevier Kishore, Nand oth Enthalten in Elsevier Duan, Cong ELSEVIER Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation 2022 an international journal of biochemistry and molecular biology Paris [u.a.] (DE-627)ELV008857954 volume:193 year:2022 pages:16-37 extent:22 https://doi.org/10.1016/j.biochi.2021.10.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.70 Energie: Allgemeines VZ AR 193 2022 16-37 22 |
allfieldsSound |
10.1016/j.biochi.2021.10.008 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001649.pica (DE-627)ELV056552599 (ELSEVIER)S0300-9084(21)00245-5 DE-627 ger DE-627 rakwb eng 600 VZ 50.70 bkl Ghosh, Ritutama verfasserin aut Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions 2022transfer abstract 22 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes. The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes. Drug transport Elsevier Calorimetry Elsevier Serum albumin Elsevier Glycation Elsevier Rational drug design Elsevier Kishore, Nand oth Enthalten in Elsevier Duan, Cong ELSEVIER Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation 2022 an international journal of biochemistry and molecular biology Paris [u.a.] (DE-627)ELV008857954 volume:193 year:2022 pages:16-37 extent:22 https://doi.org/10.1016/j.biochi.2021.10.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.70 Energie: Allgemeines VZ AR 193 2022 16-37 22 |
language |
English |
source |
Enthalten in Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation Paris [u.a.] volume:193 year:2022 pages:16-37 extent:22 |
sourceStr |
Enthalten in Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation Paris [u.a.] volume:193 year:2022 pages:16-37 extent:22 |
format_phy_str_mv |
Article |
bklname |
Energie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Drug transport Calorimetry Serum albumin Glycation Rational drug design |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation |
authorswithroles_txt_mv |
Ghosh, Ritutama @@aut@@ Kishore, Nand @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV008857954 |
dewey-sort |
3600 |
id |
ELV056552599 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056552599</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626043540.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220205s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.biochi.2021.10.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001649.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056552599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0300-9084(21)00245-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghosh, Ritutama</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">22</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Drug transport</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calorimetry</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Serum albumin</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Glycation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rational drug design</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kishore, Nand</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Duan, Cong ELSEVIER</subfield><subfield code="t">Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation</subfield><subfield code="d">2022</subfield><subfield code="d">an international journal of biochemistry and molecular biology</subfield><subfield code="g">Paris [u.a.]</subfield><subfield code="w">(DE-627)ELV008857954</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:193</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:16-37</subfield><subfield code="g">extent:22</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.biochi.2021.10.008</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">193</subfield><subfield code="j">2022</subfield><subfield code="h">16-37</subfield><subfield code="g">22</subfield></datafield></record></collection>
|
author |
Ghosh, Ritutama |
spellingShingle |
Ghosh, Ritutama ddc 600 bkl 50.70 Elsevier Drug transport Elsevier Calorimetry Elsevier Serum albumin Elsevier Glycation Elsevier Rational drug design Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions |
authorStr |
Ghosh, Ritutama |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV008857954 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
600 VZ 50.70 bkl Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions Drug transport Elsevier Calorimetry Elsevier Serum albumin Elsevier Glycation Elsevier Rational drug design Elsevier |
topic |
ddc 600 bkl 50.70 Elsevier Drug transport Elsevier Calorimetry Elsevier Serum albumin Elsevier Glycation Elsevier Rational drug design |
topic_unstemmed |
ddc 600 bkl 50.70 Elsevier Drug transport Elsevier Calorimetry Elsevier Serum albumin Elsevier Glycation Elsevier Rational drug design |
topic_browse |
ddc 600 bkl 50.70 Elsevier Drug transport Elsevier Calorimetry Elsevier Serum albumin Elsevier Glycation Elsevier Rational drug design |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
n k nk |
hierarchy_parent_title |
Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation |
hierarchy_parent_id |
ELV008857954 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV008857954 |
title |
Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions |
ctrlnum |
(DE-627)ELV056552599 (ELSEVIER)S0300-9084(21)00245-5 |
title_full |
Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions |
author_sort |
Ghosh, Ritutama |
journal |
Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation |
journalStr |
Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
16 |
author_browse |
Ghosh, Ritutama |
container_volume |
193 |
physical |
22 |
class |
600 VZ 50.70 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ghosh, Ritutama |
doi_str_mv |
10.1016/j.biochi.2021.10.008 |
dewey-full |
600 |
title_sort |
mechanistic physicochemical insights into glycation and drug binding by serum albumin: implications in diabetic conditions |
title_auth |
Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions |
abstract |
The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes. |
abstractGer |
The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes. |
abstract_unstemmed |
The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions |
url |
https://doi.org/10.1016/j.biochi.2021.10.008 |
remote_bool |
true |
author2 |
Kishore, Nand |
author2Str |
Kishore, Nand |
ppnlink |
ELV008857954 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.biochi.2021.10.008 |
up_date |
2024-07-06T20:43:50.072Z |
_version_ |
1803863856327426048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056552599</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626043540.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220205s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.biochi.2021.10.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001649.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056552599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0300-9084(21)00245-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghosh, Ritutama</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">22</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Drug transport</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calorimetry</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Serum albumin</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Glycation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rational drug design</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kishore, Nand</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Duan, Cong ELSEVIER</subfield><subfield code="t">Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation</subfield><subfield code="d">2022</subfield><subfield code="d">an international journal of biochemistry and molecular biology</subfield><subfield code="g">Paris [u.a.]</subfield><subfield code="w">(DE-627)ELV008857954</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:193</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:16-37</subfield><subfield code="g">extent:22</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.biochi.2021.10.008</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">193</subfield><subfield code="j">2022</subfield><subfield code="h">16-37</subfield><subfield code="g">22</subfield></datafield></record></collection>
|
score |
7.402936 |