Phase-field method with additional dissipation force for mixed-mode cohesive fracture
This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arb...
Ausführliche Beschreibung
Autor*in: |
Feng, Ye [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients—an intraoperative transesophageal echocardiographic study - Chao, Chieh-Ju ELSEVIER, 2015, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:159 ; year:2022 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jmps.2021.104693 |
---|
Katalog-ID: |
ELV056584946 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV056584946 | ||
003 | DE-627 | ||
005 | 20230626043609.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220205s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmps.2021.104693 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001931.pica |
035 | |a (DE-627)ELV056584946 | ||
035 | |a (ELSEVIER)S0022-5096(21)00314-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.90 |2 bkl | ||
100 | 1 | |a Feng, Ye |e verfasserin |4 aut | |
245 | 1 | 0 | |a Phase-field method with additional dissipation force for mixed-mode cohesive fracture |
264 | 1 | |c 2022transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling. | ||
520 | |a This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling. | ||
650 | 7 | |a Shear fracture |2 Elsevier | |
650 | 7 | |a Mixed-mode fracture |2 Elsevier | |
650 | 7 | |a Phase-field modeling |2 Elsevier | |
650 | 7 | |a Cohesive zone theory |2 Elsevier | |
650 | 7 | |a Cohesive law |2 Elsevier | |
700 | 1 | |a Li, Jie |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Chao, Chieh-Ju ELSEVIER |t Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients—an intraoperative transesophageal echocardiographic study |d 2015 |g Amsterdam [u.a.] |w (DE-627)ELV023912561 |
773 | 1 | 8 | |g volume:159 |g year:2022 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmps.2021.104693 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 44.90 |j Neurologie |q VZ |
951 | |a AR | ||
952 | |d 159 |j 2022 |h 0 |
author_variant |
y f yf |
---|---|
matchkey_str |
fengyelijie:2022----:hsfedehdihdiinlisptofreomxd |
hierarchy_sort_str |
2022transfer abstract |
bklnumber |
44.90 |
publishDate |
2022 |
allfields |
10.1016/j.jmps.2021.104693 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001931.pica (DE-627)ELV056584946 (ELSEVIER)S0022-5096(21)00314-8 DE-627 ger DE-627 rakwb eng 610 VZ 610 VZ 44.90 bkl Feng, Ye verfasserin aut Phase-field method with additional dissipation force for mixed-mode cohesive fracture 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling. This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling. Shear fracture Elsevier Mixed-mode fracture Elsevier Phase-field modeling Elsevier Cohesive zone theory Elsevier Cohesive law Elsevier Li, Jie oth Enthalten in Elsevier Science Chao, Chieh-Ju ELSEVIER Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients—an intraoperative transesophageal echocardiographic study 2015 Amsterdam [u.a.] (DE-627)ELV023912561 volume:159 year:2022 pages:0 https://doi.org/10.1016/j.jmps.2021.104693 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.90 Neurologie VZ AR 159 2022 0 |
spelling |
10.1016/j.jmps.2021.104693 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001931.pica (DE-627)ELV056584946 (ELSEVIER)S0022-5096(21)00314-8 DE-627 ger DE-627 rakwb eng 610 VZ 610 VZ 44.90 bkl Feng, Ye verfasserin aut Phase-field method with additional dissipation force for mixed-mode cohesive fracture 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling. This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling. Shear fracture Elsevier Mixed-mode fracture Elsevier Phase-field modeling Elsevier Cohesive zone theory Elsevier Cohesive law Elsevier Li, Jie oth Enthalten in Elsevier Science Chao, Chieh-Ju ELSEVIER Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients—an intraoperative transesophageal echocardiographic study 2015 Amsterdam [u.a.] (DE-627)ELV023912561 volume:159 year:2022 pages:0 https://doi.org/10.1016/j.jmps.2021.104693 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.90 Neurologie VZ AR 159 2022 0 |
allfields_unstemmed |
10.1016/j.jmps.2021.104693 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001931.pica (DE-627)ELV056584946 (ELSEVIER)S0022-5096(21)00314-8 DE-627 ger DE-627 rakwb eng 610 VZ 610 VZ 44.90 bkl Feng, Ye verfasserin aut Phase-field method with additional dissipation force for mixed-mode cohesive fracture 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling. This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling. Shear fracture Elsevier Mixed-mode fracture Elsevier Phase-field modeling Elsevier Cohesive zone theory Elsevier Cohesive law Elsevier Li, Jie oth Enthalten in Elsevier Science Chao, Chieh-Ju ELSEVIER Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients—an intraoperative transesophageal echocardiographic study 2015 Amsterdam [u.a.] (DE-627)ELV023912561 volume:159 year:2022 pages:0 https://doi.org/10.1016/j.jmps.2021.104693 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.90 Neurologie VZ AR 159 2022 0 |
allfieldsGer |
10.1016/j.jmps.2021.104693 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001931.pica (DE-627)ELV056584946 (ELSEVIER)S0022-5096(21)00314-8 DE-627 ger DE-627 rakwb eng 610 VZ 610 VZ 44.90 bkl Feng, Ye verfasserin aut Phase-field method with additional dissipation force for mixed-mode cohesive fracture 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling. This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling. Shear fracture Elsevier Mixed-mode fracture Elsevier Phase-field modeling Elsevier Cohesive zone theory Elsevier Cohesive law Elsevier Li, Jie oth Enthalten in Elsevier Science Chao, Chieh-Ju ELSEVIER Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients—an intraoperative transesophageal echocardiographic study 2015 Amsterdam [u.a.] (DE-627)ELV023912561 volume:159 year:2022 pages:0 https://doi.org/10.1016/j.jmps.2021.104693 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.90 Neurologie VZ AR 159 2022 0 |
allfieldsSound |
10.1016/j.jmps.2021.104693 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001931.pica (DE-627)ELV056584946 (ELSEVIER)S0022-5096(21)00314-8 DE-627 ger DE-627 rakwb eng 610 VZ 610 VZ 44.90 bkl Feng, Ye verfasserin aut Phase-field method with additional dissipation force for mixed-mode cohesive fracture 2022transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling. This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling. Shear fracture Elsevier Mixed-mode fracture Elsevier Phase-field modeling Elsevier Cohesive zone theory Elsevier Cohesive law Elsevier Li, Jie oth Enthalten in Elsevier Science Chao, Chieh-Ju ELSEVIER Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients—an intraoperative transesophageal echocardiographic study 2015 Amsterdam [u.a.] (DE-627)ELV023912561 volume:159 year:2022 pages:0 https://doi.org/10.1016/j.jmps.2021.104693 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.90 Neurologie VZ AR 159 2022 0 |
language |
English |
source |
Enthalten in Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients—an intraoperative transesophageal echocardiographic study Amsterdam [u.a.] volume:159 year:2022 pages:0 |
sourceStr |
Enthalten in Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients—an intraoperative transesophageal echocardiographic study Amsterdam [u.a.] volume:159 year:2022 pages:0 |
format_phy_str_mv |
Article |
bklname |
Neurologie |
institution |
findex.gbv.de |
topic_facet |
Shear fracture Mixed-mode fracture Phase-field modeling Cohesive zone theory Cohesive law |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients—an intraoperative transesophageal echocardiographic study |
authorswithroles_txt_mv |
Feng, Ye @@aut@@ Li, Jie @@oth@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
ELV023912561 |
dewey-sort |
3610 |
id |
ELV056584946 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056584946</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626043609.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220205s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmps.2021.104693</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001931.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056584946</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-5096(21)00314-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase-field method with additional dissipation force for mixed-mode cohesive fracture</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shear fracture</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mixed-mode fracture</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phase-field modeling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cohesive zone theory</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cohesive law</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Chao, Chieh-Ju ELSEVIER</subfield><subfield code="t">Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients—an intraoperative transesophageal echocardiographic study</subfield><subfield code="d">2015</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV023912561</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:159</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmps.2021.104693</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">159</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Feng, Ye |
spellingShingle |
Feng, Ye ddc 610 bkl 44.90 Elsevier Shear fracture Elsevier Mixed-mode fracture Elsevier Phase-field modeling Elsevier Cohesive zone theory Elsevier Cohesive law Phase-field method with additional dissipation force for mixed-mode cohesive fracture |
authorStr |
Feng, Ye |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV023912561 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.90 bkl Phase-field method with additional dissipation force for mixed-mode cohesive fracture Shear fracture Elsevier Mixed-mode fracture Elsevier Phase-field modeling Elsevier Cohesive zone theory Elsevier Cohesive law Elsevier |
topic |
ddc 610 bkl 44.90 Elsevier Shear fracture Elsevier Mixed-mode fracture Elsevier Phase-field modeling Elsevier Cohesive zone theory Elsevier Cohesive law |
topic_unstemmed |
ddc 610 bkl 44.90 Elsevier Shear fracture Elsevier Mixed-mode fracture Elsevier Phase-field modeling Elsevier Cohesive zone theory Elsevier Cohesive law |
topic_browse |
ddc 610 bkl 44.90 Elsevier Shear fracture Elsevier Mixed-mode fracture Elsevier Phase-field modeling Elsevier Cohesive zone theory Elsevier Cohesive law |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j l jl |
hierarchy_parent_title |
Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients—an intraoperative transesophageal echocardiographic study |
hierarchy_parent_id |
ELV023912561 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients—an intraoperative transesophageal echocardiographic study |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV023912561 |
title |
Phase-field method with additional dissipation force for mixed-mode cohesive fracture |
ctrlnum |
(DE-627)ELV056584946 (ELSEVIER)S0022-5096(21)00314-8 |
title_full |
Phase-field method with additional dissipation force for mixed-mode cohesive fracture |
author_sort |
Feng, Ye |
journal |
Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients—an intraoperative transesophageal echocardiographic study |
journalStr |
Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients—an intraoperative transesophageal echocardiographic study |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Feng, Ye |
container_volume |
159 |
class |
610 VZ 44.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Feng, Ye |
doi_str_mv |
10.1016/j.jmps.2021.104693 |
dewey-full |
610 |
title_sort |
phase-field method with additional dissipation force for mixed-mode cohesive fracture |
title_auth |
Phase-field method with additional dissipation force for mixed-mode cohesive fracture |
abstract |
This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling. |
abstractGer |
This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling. |
abstract_unstemmed |
This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Phase-field method with additional dissipation force for mixed-mode cohesive fracture |
url |
https://doi.org/10.1016/j.jmps.2021.104693 |
remote_bool |
true |
author2 |
Li, Jie |
author2Str |
Li, Jie |
ppnlink |
ELV023912561 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.jmps.2021.104693 |
up_date |
2024-07-06T20:49:07.732Z |
_version_ |
1803864189418078208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV056584946</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626043609.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220205s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmps.2021.104693</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001931.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV056584946</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-5096(21)00314-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase-field method with additional dissipation force for mixed-mode cohesive fracture</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper develops a thermodynamic framework of phase-field fracture modeling for cases where the toughness depends on the fracture mode. Using a delicately constructed energy density and a novel dissipation force in the thermodynamic framework, we propose a phase-field model that can implement arbitrary mixed-mode cohesive laws for cases where the mode-II fracture energy ( G I I c ) is larger than the mode-I fracture energy ( G I c ). Four numerical examples are presented to validate the effectiveness of the proposed method, including a uniaxial tension test, a uniaxial compression test, a mixed-mode test on dogbone specimens, and a series of tests on double-edge notched concrete under mixed-mode loading. In the first three examples, the numerically predicted cohesive laws are extracted and compared with the analytical target cohesive laws. Excellent agreements are observed. In the last example, we show that very wrong crack paths may be obtained without distinguishing G I c and G I I c in phase-field modeling.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shear fracture</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mixed-mode fracture</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phase-field modeling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cohesive zone theory</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cohesive law</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Chao, Chieh-Ju ELSEVIER</subfield><subfield code="t">Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients—an intraoperative transesophageal echocardiographic study</subfield><subfield code="d">2015</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV023912561</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:159</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmps.2021.104693</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">159</subfield><subfield code="j">2022</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.3991013 |